Skip to main content

Role of Metal Ions in Promoting DNA Binding and Cleavage by Restriction Endonucleases

  • Chapter

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 14))

Abstract

While three major classes of restriction endonucleases have been identified (Types I, II, and III), Type II are the most straightforward inasmuch as they require divalent magnesium as an essential cofactor but have no need for ATP (Stasiak 1980; Bennett and Halford 1989; Bujnicki 2000; Murray 2000; Sapranauskas et al. 2000; Pingoud and Jeltsch 2001). A complete classification of Type II restriction nucleases has been presented elsewhere (Pingoud and Jeltsch 2001) and the family is noted for the remarkable specificity and simplicity of its function. These enzymes cleave both strands of doublestrand DNA either at or near a recognition sequence that tends to be palindromic. Consequently most restriction endonucleases are dimeric and recognize symmetric DNA sequences. While showing many functional similarities in DNA recognition and catalytic cleavage, restriction endonucleases also display low sequence homology, and diversity in mechanisms of recognizing DNA target sequences and the positioning of metal cofactors (Aggarwal 1995; Wah et al. 1997; Viadiu and Aggarwal 1998). Such diversity results in subtle variations in both protein binding locations and potential functional roles for essential metal cofactors that are only now coming under investigation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aggarwal AK (1995) Structure and function of restriction endonucleases. Curr Opin Struct Biol 5:11–19

    Article  PubMed  CAS  Google Scholar 

  • Alves J, Urbanke C, Fliess A, Maass G, Pingoud A (1989) Fluorescence stopped-flow kinetics of the cleavage of synthetic oligodeoxynucleotides by the EcoRI restriction endonuclease. Biochemistry 28:7879–7888

    Article  PubMed  CAS  Google Scholar 

  • Athanasiadis A, Vlassi M, Kotsifaki D, Tucker PA, Wilson KS, Kokkinidis M (1994) Crystal structure of PvuII endonuclease reveals extensive structural homologies to EcoRV. Nat Struct Biol 1:469–475

    Article  PubMed  CAS  Google Scholar 

  • Baldwin GS, Vipond IB, Halford SE (1995) Rapid reaction anaylsis of the catalytic cycle of the EcoRV restriction endonuclease. Biochemistry 34:705–714

    Article  PubMed  CAS  Google Scholar 

  • Beese LS, Steitz TA (1991) Structural basis for the 3′–5′ exonuclease activity of Escherichia coli DNApolymerase I: a two metal ion mechanism. EMBOJ 10:25–33

    CAS  Google Scholar 

  • Bennett P, Halford SE (1989) Recognition of DNA by Type II restriction enzymes. Curr Topics Cell Regul 30:57–104

    CAS  Google Scholar 

  • Black CB, Cowan JA (1994) Inorg Chem 33:5805–5808

    Article  CAS  Google Scholar 

  • Bozic D, Grazulis S, Siksnys V, Huber R (1996) Crystal structure of Citrobacter freundii restriction endonuclease Cfr10I at 2.15Å resolution. J Mol Biol 255:176–186

    Article  PubMed  CAS  Google Scholar 

  • Bujnicki JM (2000) Phylogeny of the restriction endonuclease-like superfamily inferred from comparison of protein structures. J Mol Evol 50:39–44

    PubMed  CAS  Google Scholar 

  • Burgess J (1978) Metals in solution. Ellis Horwood, NewYork

    Google Scholar 

  • Ceska TA, Sayers JR, Stier G, Suck D (1996) Ahelical arch allowing single-stranded DNA to thread through T5 5′-exonuclease. Nature 382:90–93

    Article  PubMed  CAS  Google Scholar 

  • Cheng XK, Balendiran K, Schildkraut I, Anderson JE. (1994) Structure of PvuII endonuclease with cognate DNA. EMBO J 13(17):3927–3935

    PubMed  CAS  Google Scholar 

  • Chevalier BS, Monnat RJ, Stoddard BL (2001) The homing endonuclease I-CreI uses three metals one of which is shared between the two active sites. Nat Struct Biol 8:312–316

    Article  PubMed  CAS  Google Scholar 

  • Conlan LH, Dupureur CM (2002a) Dissecting the metal ion dependence of DNAbinding by PvuII endonuclease. Biochemistry 41:1335–1342

    Article  PubMed  CAS  Google Scholar 

  • Conlan LH, Dupureur CM (2002b) Multiple metal ions drive DNA association by PvuII endonuclease. Biochemistry 41:14848–14855

    Article  PubMed  CAS  Google Scholar 

  • Conlan LH, Jose TJ, Thornton KC, Dupureur CM (1999) Modulating restriction endonuclease activities and specificities using neutral detergents. Bio Techn 27:955–960

    CAS  Google Scholar 

  • Cowan JA (1992) Transition metals as probes of metal cofactors in nucleic acid biochemistry. Comm Inorg Chem 13:293–312

    Article  CAS  Google Scholar 

  • Cowan JA (1995a) Biological chemistry of magnesium. VCH, NewYork

    Google Scholar 

  • Cowan JA (1995b) Inorganic biochemistry. An introduction. VCH, NewYork

    Google Scholar 

  • Cowan JA (1998) Metal activation of enzymes in nucleic acid biochemistry. Chem Rev (Washington, DC) 98(3):1067–1087

    Article  CAS  Google Scholar 

  • Demple B, Johnson A, Fung D (1986) Exonuclease-III and exonuclease-IV remove 3’ blocks from DNA-synthesis primers in H2O2-damaged E. coli. Proc Natl Acad Sci USA 83:7731–7735

    Article  PubMed  CAS  Google Scholar 

  • Dominguez MA, Thornton KC, Melendez MG, Dupureur CM (2001) Differential effects of isomeric incorporation of fluorophenylalanines into PvuII endonuclease. Prot Struct Func Gen 45:55–61

    Article  CAS  Google Scholar 

  • Dupureur CM, Conlan LH (2000) A catalytically deficient active site variant of PvuII endonuclease binds Mg(II) ions. Biochemistry 39:10921–10927

    Article  PubMed  CAS  Google Scholar 

  • Dupureur CM, Dominguez MA (2001) The PD...(D/E) XK motif in restriction enzymes: a link between function and conformation. Biochemistry 40:387–394

    Article  PubMed  CAS  Google Scholar 

  • Dupureur CM, Hallman LM (1999) Effects of divalent metal ions on the activity and conformation of native and 3-fluorotyrosine-PvuII endonucleases. Eur J Biochem 261:261–268

    Article  PubMed  CAS  Google Scholar 

  • Friedhoff P, Kolmes B, Gimadutdinow O, Wende W, Krause KL, Pingoud A (1996) Analysis of the mechanism of the Serratia nuclease using site-directed mutagenesis. Nucleic Acids Res 24:2632–2639

    Article  PubMed  CAS  Google Scholar 

  • Grabowski G, Jeltsch A, Wolfes H, Maass G, Alves J (1995) Site-directed mutagenesis in the catalytic center of the restriction endonuclease EcoRI. Gene 157:113–118

    Article  PubMed  CAS  Google Scholar 

  • Grabowski G, Maass G, Alves J (1996) Asp-59 is not important for the catalytic activity of the restriction endonuclease EcoRI. FEBS Lett 381:106–110

    Article  PubMed  CAS  Google Scholar 

  • Grasby JA, Connolly BA (1992) Stereochemical outcome of the hydrolysis reaction catalyzed by EcoRV restriction endonuclease. Biochemistry 31:7855–7861

    Article  PubMed  CAS  Google Scholar 

  • Groll DH, Jeltsch A, Selent U, Pingoud A (1997) Does the restriction endonuclease EcoRV employ a two-metal-Ion mechanism for DNA cleavage? Biochemistry 36:11389–11401

    Article  PubMed  CAS  Google Scholar 

  • Gromova ES, Vinogradova MN, Uporova TM, Gryaznova OI, Isagulyant MG, Kosykh VG, Nikol’skaya II, Shabarova ZA (1987) DNA duplexes with phosphoamide bonds: the interaction with restriction endonucleases EcoRII and SsoII. Bioorg Khim 13:269–272

    PubMed  CAS  Google Scholar 

  • Halford SE (2001) Hopping jumping and looping by restriction enzymes. Biochem Soc Trans 29:363–373

    Article  PubMed  CAS  Google Scholar 

  • Halford SE, Bilcock DT, Stanford NP, Williams SA, Milsom SE, Gormley NA, Watson MA, Bath AJ, Embleton ML, Gowers DM, Daniels LE, Parry SH, Szczelkun MD (1999) Restriction endonuclease reactions requiring two recognition sites. Biochem Soc Trans 27:696–699

    PubMed  CAS  Google Scholar 

  • Haruki M, Noguchi E, Nakai C, Liu YY, Oobatake M, Itaya M, Kanaya S (1994) Investigating the role of conserved residue Asp134 in Escherichia coli ribonuclease HI by sitedirected random mutagenesis. Eur J Biochem 220:623–631

    Article  PubMed  CAS  Google Scholar 

  • Horton JR, Cheng X (2000) PvuII endonuclease contains two calcium ions in active sites. J Mol Biol 300:1051–1058

    Article  Google Scholar 

  • Horton JR, Nastri HG, Riggs PD, Cheng X (1998) Asp34 of PvuII endonuclease is directly involved in DNAminor groove recognition and indirectly involved in catalysis. J Mol Biol 284:1491–1504

    Article  PubMed  CAS  Google Scholar 

  • Horton NC, Newberry KJ, Perona JJ (1998) Metal-ion-mediated substrate-assisted catalysis in Type II restriction endonucleases. Proc Natl Acad Sci USA 95:13489–13494

    Article  PubMed  CAS  Google Scholar 

  • Jeltsch A, Alves J, Maass G, Pingoud A (1992) On the catalytic mechanism of EcoRI and EcoRV A detailed proposal based on biochemical results structural data and molecular modeling. FEBS Lett 304:4–8

    Article  PubMed  CAS  Google Scholar 

  • Jeltsch A, Alves J, Wolfes H, Maass G, Pingoud A (1993) Substrate-assisted catalysis in the cleavage of DNA by the EcoRI and EcoRV restriction enzymes. Proc Natl Acad Sci USA 90:8499–8503

    Article  PubMed  CAS  Google Scholar 

  • Jeltsch A, Maschke H, Selent U, Wenz C, Koehler E, Connolly BA, Thorogood H, Pingoud A (1995) DNA binding specificity of the EcoRVrestriction endonuclease is increased by Mg2+ binding to a metal ion binding site distinct from the catalytic center of the enzyme. Biochemistry 34:6239–6246

    Article  PubMed  CAS  Google Scholar 

  • Jose TL, Conlan LH, Dupureur CM (1999) Quantitative evaluation of metal ion binding to PvuII restriction endonuclease. (JBIC) J Biol Inorg Chem 4:814–823

    Article  PubMed  CAS  Google Scholar 

  • Kim S, Cowan JA (1992) Inert cobalt complexes as mechanistic probes of the biochemistry of magnesium cofactors. Application to topoisomerase I. Inorg Chem 31:3495–3496

    Article  CAS  Google Scholar 

  • King KS, Benkovic SJ, Modrich P (1989) Glu-111 is required for activation of the DNA cleavage center of EcoRI endonuclease. J Biol Chem 264:11807–11815

    PubMed  CAS  Google Scholar 

  • Kostrewa D, Winkler FK (1995) Mg2+ binding to the active site of EcoRV endonuclease: a crystallographic study of complexes with substrate and product DNA at 2 Å resolution. Biochemistry 34:683–696

    Article  PubMed  CAS  Google Scholar 

  • Lukacs. CM, Kucera R, Schildkraut I, Aggarwal AK (2000) Understanding the immutability of restriction enzymes: crystal structure of BglII and its DNA substrate at 1.5 Å resolution. Nat Struct Biol 2:134–140

    Google Scholar 

  • Moon BJ, Vipond IB, Halford SE (1996) Site-directed mutagenesis of Ile91 of restriction endonuclease EcoRV: dramatic consequences on the activity and the properties of the enzyme. J Biochem Mol Biol 29:17–21

    CAS  Google Scholar 

  • Murray NE (2000) Type I restriction systems: sophisticated molecular machines (a legacy of Bertani and Weigle). Microbiol Mol Biol Rev 64:412–434

    Article  PubMed  CAS  Google Scholar 

  • Nastri HG, Evans PD, Walker IH, Riggs PD (1997) Catalytic and DNA binding properties of PvuII restriction endonuclease mutants. I Biol Chem 272:25761–25767

    Article  CAS  Google Scholar 

  • Newman MK, Lunnen K, Lunnen K, Wilson G, Greci J, Schildkraut I, Phillips SEV (1998) Crystal structure of restriction endonuclease BglI bound to its interrupted DNA recognition sequence. EMBO J 17:5466–5476

    Article  PubMed  CAS  Google Scholar 

  • Newman MT, Strzelecka T, Dorner LF, Schildkraut I, Aggarwal AK, (1994). Structure of restriction endonuclease BamHI and its relationship to EcoRI. Nature 368:660–664

    Article  PubMed  CAS  Google Scholar 

  • Newman MT, Strzelecka T, Dorner LF, Schildkraut I, Aggarwal AK (1995) Structure of Bam HI endonuclease bound to DNA: partial folding and unfolding on DNA binding. Science 269:656–663

    Article  PubMed  CAS  Google Scholar 

  • Piccirilli JA, Vyle IS, Caruthers MH, Cech TR (1993) Metal ion catalysis in the Tetrahymena ribozyme reaction. Nature 361:85

    Article  PubMed  CAS  Google Scholar 

  • Pingoud A, Jeltsch A (1997) Recognition and cleavage of DNA by Type-II restriction endonucleases. Eur J Biochem 246:1–22

    Article  PubMed  CAS  Google Scholar 

  • Pingoud A, leltsch A (2001) Structure and function of Type-II restriction endonucleases. Nucleic Acids Res 29:3705–3727

    Article  PubMed  CAS  Google Scholar 

  • Rao D, Saha S, Krishnamurthy V (2000) ATP-dependent restriction enzymes. Prog Nucl Acid Res Mol Biol 64:1–63

    Article  CAS  Google Scholar 

  • Rosenberg JM (1991) Structure and function of restriction endonucleases. Curr Opin Struct Biol 1:104–113

    Article  CAS  Google Scholar 

  • Sapranauskas RG, Sasnauskas G, Lagunavicius A, Vilkaitis G, Lubys A, Siksnys V (2000) Novel subtype of Type IIs restriction enzymes. BfiI endonuclease exhibits similarities to the EDTA-resistant nuclease Nuc of Salmonella typhimurium. J Biol Chem 275(40):30878–30885

    Article  PubMed  CAS  Google Scholar 

  • Selent UT, Ruter T, Kohler E, Liedtke M, Thielking V, Alves J, Oelgeschlager T, Wolfes H, Peters F, Pingoud A (1992) A site-directed mutagenesis study to identify amino acid residues involved in the catalytic function of the restriction endonuclease EcoRV. Biochemistry 31:4808–4815

    Article  PubMed  CAS  Google Scholar 

  • Skirgaila RS, Grazulis S, Bozic D, Huber R, Siksnys V (1998) Structure-based redesign of the catalytic/metal binding site of Cfrl0i restriction endonuclease reveals importance of spatial rather than sequence conservation of active center residues. J Mol Biol 279:473–481

    Article  PubMed  CAS  Google Scholar 

  • Stasiak A (1980) Restriction enzymes. I. Mechanisms of action of Type II restrictionmodification systems. Postepy Biochem 26:343–367

    PubMed  CAS  Google Scholar 

  • Thielking VU, Selent U, Kohler E, Landgraf A, Wolfes H, Alves II, Pingoud A (1992) Magnesium( 2+) confers DNA binding specificity to the EcoRV restriction endonuclease. Biochemistry 31:3727–3732

    Article  PubMed  CAS  Google Scholar 

  • Tsutakawa SE, Morikawa K (2001) The structural basis of damaged DNA recognition and endonucleolytic cleavage for very short patch repair endonuclease. Nucleic Acids Res 29:3775–3783

    Article  PubMed  CAS  Google Scholar 

  • Vanamee E, Santagata S, Aggarwal AK (2001) FokI requires two specific DNA sites for cleavage. J Mol Biol 309:69–78

    Article  PubMed  CAS  Google Scholar 

  • Viadiu H, Aggarwal AK (1998) The role of metals in catalysis by the restriction endonuclease BamHI. Nat Struct Biol 5:910–916

    Article  PubMed  CAS  Google Scholar 

  • Vipond IB, Baldwin GS, Halford SE (1995) Divalent metal ions at the active site of the EcoRVand EcoRI restriction endonucleases. Biochemistry 34:697–704

    Article  PubMed  CAS  Google Scholar 

  • Vipond IB, Halford SE (1995) Specific DNA recognition by EcoRV restriction endonuclease induced by calcium ions. Biochemistry 34:1113–1119

    Article  PubMed  CAS  Google Scholar 

  • Vipond IB, Moon BJ, Halford SE (1996) An isoleucine to leucine mutation that switches the cofactor requirement of the EcoRV restriction endonuclease from magnesium to manganese. Biochemistry 35:1712–1721

    Article  PubMed  CAS  Google Scholar 

  • Wah DA, Hirsch JA, Dorner LF, Schildkraut I, Aggarwal AK (1997) Structure of the rnultimodular endonuclease FokI bound to DNA. Nature 388:97–100

    Article  PubMed  CAS  Google Scholar 

  • Wolfes HJ, Alves J, Fliess A, Geiger R, Pingoud A (l986) Site directed mutagenesis experiments suggest that Glu 111 Glu 144 and Arg 145 are essential for endonucleolytic activity of EcoRI. Nucleic Acids Res 14:9063–9080

    Article  Google Scholar 

  • Xu SY, Schildkraut I (1991) Isolation of BamHI variants with reduced cleavage activities. J Biol Chem 266:4425–4429

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cowan, J.A. (2004). Role of Metal Ions in Promoting DNA Binding and Cleavage by Restriction Endonucleases. In: Pingoud, A.M. (eds) Restriction Endonucleases. Nucleic Acids and Molecular Biology, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18851-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18851-0_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62324-0

  • Online ISBN: 978-3-642-18851-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics