Skip to main content

Exploring Cortical Folding Pattern Variability Using Local Image Features

  • Conference paper
  • 1514 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6533))

Abstract

The variability in cortical morphology across subjects makes it difficult to develop a general atlas of cortical sulci. In this paper, we present a data-driven technique for automatically learning cortical folding patterns from MR brain images. A local image feature-based model is learned using machine learning techniques, to describe brain images as a collection of independent, co-occurring, distinct, localized image features which may not be present in all subjects. The choice of feature type (SIFT, KLT, Harris-affine) is explored with regards to identifying cortical folding patterns while also uncovering their group-related variability across subjects. The model is built on lateral volume renderings from the ICBM dataset, and applied to hemisphere classification in order to identify patterns of lateralization based on each feature type.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ono, M., et al.: Atlas of the Cerebral Sulci. Thieme Medical (1990)

    Google Scholar 

  2. Toga, A.W., et al.: Probabilistic approaches for atlasing normal and disease-specific brain variability. Anat. Embryol., 267–282 (2001)

    Google Scholar 

  3. Mangin, J., et al.: Object-Based Morphometry of the Cerebral Cortex. IEEE TMI (2004)

    Google Scholar 

  4. Mangin, J. et al.: A framework to study the cortical folding patterns. NeuroImage (2004)

    Google Scholar 

  5. Klein, A. et al.: Mindboggle: a scatterbrained approach to automate brain labeling. NeuroImage (2005)

    Google Scholar 

  6. Blezek, D.J., Miller, J.V.: Atlas stratification. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4190, pp. 712–719. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Baloch, S., et al.: An anatomical equivalence class based joint transformation-residual descriptor for morphological analysis. In: Karssemeijer, N., Lelieveldt, B. (eds.) IPMI 2007. LNCS, vol. 4584, pp. 594–606. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  8. Toews, M., Arbel, T.: A Statistical Parts-based Appearance Model of Anatomical Variability. In: IEEE TMI, pp. 497–508 (2007)

    Google Scholar 

  9. Toews, M. et al.: Feature-Based Morphometry: Discovering Group-related Anatomical Patterns. NeuroImage (2009)

    Google Scholar 

  10. Toews, M., et al.: Automatically Learning Cortical Folding Patterns. In: IEEE ISBI, pp. 1330–1333 (2009)

    Google Scholar 

  11. Mazziotta, J., et al.: A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). Philos. Trans. R Soc. Lond. B Biol. Sci. 356(1412), 1293–1322 (2001)

    Article  Google Scholar 

  12. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. IJCV 60(2), 91–110 (2004)

    Article  Google Scholar 

  13. Tomasi, C., Shi, J.: Good Features to Track. In: CVPR, pp. 593–600 (1994)

    Google Scholar 

  14. Mikolajczyk, K., et al.: Scale and affine invariant interest point detectors. IJCV 60(1), 63–86 (2004)

    Article  Google Scholar 

  15. Duchesnay, E., et al.: Classification from cortical folding patterns. IEEE TMI 26(4), 553–565 (2007)

    Google Scholar 

  16. Xu, C., et al.: A Spherical Map for Cortical Geometry. In: Proc. Int. Conf. Functional Mapping Human Brain, pp. 73–74 (1998)

    Google Scholar 

  17. Angenent, S., et al.: On the Laplace-Beltrami operator and brain surface flattening. IEEE Trans. Med. Imag. 18(8), 700–711 (1999)

    Article  Google Scholar 

  18. Lyttelton, O., et al.: Positional and Surface Area Asymmetry of the Human Cerebral Cortex explored through automated surface-based analysis. Neuroimage (2009)

    Google Scholar 

  19. Foundas, A.L., et al.: Pars triangularis asymmetry and language dominance. Proc. Natl. Acad. Sci. USA 93(2), 719–722 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rajalingham, R., Toews, M., Collins, D.L., Arbel, T. (2011). Exploring Cortical Folding Pattern Variability Using Local Image Features. In: Menze, B., Langs, G., Tu, Z., Criminisi, A. (eds) Medical Computer Vision. Recognition Techniques and Applications in Medical Imaging. MCV 2010. Lecture Notes in Computer Science, vol 6533. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18421-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18421-5_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-18420-8

  • Online ISBN: 978-3-642-18421-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics