Skip to main content

Predicting Three-Dimensional Inertial Thin Film Flow over Micro-Scale Topography

  • Conference paper
  • First Online:
Computational Fluid Dynamics 2010
  • 1397 Accesses

Abstract

Alternative lubrication and depth-averaged formulations of the unsteady Navier–Stokes equations are used to explore the problem of gravity-driven inertial thin film flow on substrates containing topography that is either fully submerged or protrudes through the film. The resulting discrete form of the equation sets are solved using a multigrid strategy incorporating automatic adaptive time-stepping, enabling accurate mesh independent solutions to be generated very efficiently. Two benchmark test problems are solved revealing the extent of the free surface disturbance that ensues, together with the effect of inertia on the same.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baxter, S.J., Power, H., Cliffe, K.A., Hibberd, S.: Three-dimensional thin film flow over and around an obstacle on an inclined plane. Phys. Fluids 21(3), 032102–23 (2009)

    Article  Google Scholar 

  2. Chung, T.J.: Computational Fluid Dynamics. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  3. Decré, M.M.J., Baret, J.C.: Gravity-driven flows of viscous liquids over two-dimensional topographies. J. Fluid Mech. 487, 147–166 (2003)

    Article  MATH  Google Scholar 

  4. Gaskell, P.H., Jimack, P.K., Sellier, M., Thompson, H.M., Wilson M.C.T.: Gravity-driven flow of continuous thin liquid films on non-porous substrates with topography. J. Fluid Mech. 509, 253–280 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gaver, D.P., Grotberg, J.B.: The dynamics of a localized surfactant on a thin-film. J. Fluid Mech. 213, 127–148 (1990)

    Article  MATH  Google Scholar 

  6. Ho, W.K., Tay, A., Lee, L.L., Schaper, C.D.: On control of resist film uniformity in the microlithography process. Contr. Eng. Pract. 12(7), 881–892 (2004)

    Article  Google Scholar 

  7. Oron, A., Davis, S.H., Bankoff, S.G.: Long scale evolution of thin liquid films. Rev. Mod. Phys. 69(3), 931–980 (1997)

    Article  Google Scholar 

  8. Sellier, M., Lee, Y.C., Thompson, H.M., Gaskell, P.H.: Thin film flow on surfaces containing arbitrary occlusions. Comp. Fluids 38(1), 171–182 (2009)

    Article  MathSciNet  Google Scholar 

  9. Veremieiev, S., Thompson, H.M., Lee, Y.C., Gaskell, P.H.: Inertial thin film flow on planar surfaces featuring topography. Comp. Fluids 39(3), 431–450 (2010)

    Article  Google Scholar 

  10. Walters, D.R.: Disguising the leaf surface: the use of leaf coatings for plant disease control. Euro. J. Plant Path. 114(3), 255–260 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

S. Veremieiev gratefully acknowledges the financial support of the European Union Marie Curie Action, contract MEST-CT-2005-020599.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergii Veremieiev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Veremieiev, S., Gaskell, P.H., Lee, Y.C., Thompson, H.M. (2011). Predicting Three-Dimensional Inertial Thin Film Flow over Micro-Scale Topography. In: Kuzmin, A. (eds) Computational Fluid Dynamics 2010. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17884-9_105

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17884-9_105

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17883-2

  • Online ISBN: 978-3-642-17884-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics