Skip to main content

Role of NCX1 and NHE1 in Ventricular Arrhythmia

  • Chapter
  • First Online:
Heart Rate and Rhythm
  • 1628 Accesses

Abstract

Lethal ventricular arrhythmias are one of the primary causes of high mortality among patients with a variety of cardiac diseases, such as acute ischemia–reperfusion injury, chronic ischemic heart disease (IHD), all major forms of heart failure (HF), and congenital cardiomyopathies. Perturbations in intracellular Ca2+ and Na+ homeostasis leading to massive Ca 2+i overload are frequently found in the background of cardiac arrhythmogenesis. Recent data explicitly demonstrate that these perturbations are tightly connected to enhanced function and/or overexpression of two cardiac sarcolemmal ion transporters, the Na+/Ca2+ exchanger (NCX1), a major regulator of the intracellular Ca2+ content ([Ca2+]i), and the Na+/H+ exchanger (NHE1), the primary regulator of intracellular pH. Recent efforts to delineate the real therapeutic value of NCX1 modulation were still hampered by the absence of specific and effective inhibitors and the total absence of specific activators. On the other side, several well-established inhibitors of the NHE1 are already in clinical practice or under evaluation, but human data – promising in limiting the size of the ischemic injury – are much less convincing in preventing lethal ventricular arrhythmias. In this chapter, we aim to discuss the involvement of these two ion transporters in the regulation of the [Ca2+]i homeostasis in the healthy and diseased heart, to underline their principal contribution to generation of ventricular arrhythmia and to summarize experimental results obtained in studies in the direction of their antiarrhythmic and cardioprotective modulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bers DM. Excitation-contraction coupling and cardiac contractile force. Dorderecht: Kluwer Academic; 2001.

    Google Scholar 

  2. Hryshko LV. Tissue-specific modes of Na/Ca exchanger regulation. Ann NY Acad Sci. 2002;976:166–75.

    Article  PubMed  CAS  Google Scholar 

  3. Blaustein MP, Lederer WJ. Sodium/calcium exchange: its physiological implications. Physiol Rev. 1999;79(3):763–854.

    PubMed  CAS  Google Scholar 

  4. Egger M, Niggli E. Regulatory function of Na-Ca exchange in the heart: milestones and outlook. J Membr Biol. 1999;168(2):107–30.

    Article  PubMed  CAS  Google Scholar 

  5. Philipson KD, Nicoll DA. Sodium-calcium exchange: a molecular perspective. Annu Rev Physiol. 2000;62:111–33.

    Article  PubMed  CAS  Google Scholar 

  6. Lytton J. Na+/Ca2+ exchangers: three mammalian gene families control Ca2+ transport. Biochem J. 2007;406(3):365–82.

    Article  PubMed  CAS  Google Scholar 

  7. Pogwizd SM, Bers DM. Cellular basis of triggered arrhythmias in heart failure. Trends Cardiovasc Med. 2004;14(2):61–6.

    Article  PubMed  CAS  Google Scholar 

  8. Scoote M, Williams AJ. Myocardial calcium signalling and arrhythmia pathogenesis. Biochem Biophys Res Commun. 2004;322(4):1286–309.

    Article  PubMed  CAS  Google Scholar 

  9. Sipido KR. Calcium overload, spontaneous calcium release, and ventricular arrhythmias. Heart Rhythm. 2006;3(8):977–9.

    Article  PubMed  Google Scholar 

  10. Homma N, Amran MS, Nagasawa Y, Hashimoto K. Topics on the Na+/Ca2+ exchanger: involvement of Na+/Ca2+ exchange system in cardiac triggered activity. J Pharmacol Sci. 2006;102(1):17–21.

    Article  PubMed  CAS  Google Scholar 

  11. Ter Keurs HE, Boyden PA. Calcium and arrhythmogenesis. Physiol Rev. 2007;87(2):457–506.

    Article  PubMed  Google Scholar 

  12. Nattel S, Maguy A, Le Bouter S, Yeh YH. Arrhythmogenic ion-channel remodeling in the heart: heart failure, myocardial infarction, and atrial fibrillation. Physiol Rev. 2007;87(2):425–56.

    Article  PubMed  CAS  Google Scholar 

  13. Henderson SA, Goldhaber JI, So JM, Han T, Motter C, Ngo A, et al. Functional adult myocardium in the absence of Na+-Ca2+ exchange: cardiac-specific knockout of NCX1. Circ Res. 2004;95(6):604–11.

    Article  PubMed  CAS  Google Scholar 

  14. Pott C, Philipson KD, Goldhaber JI. Excitation-contraction coupling in Na+-Ca2+ exchanger knockout mice: reduced transsarcolemmal Ca2+ flux. Circ Res. 2005;97(12):1288–95.

    Article  PubMed  CAS  Google Scholar 

  15. Weber CR, Piacentino 3rd V, Ginsburg KS, Houser SR, Bers DM. Na(+)-Ca(2+) exchange current and submembrane [Ca(2+)] during the cardiac action potential. Circ Res. 2002;90(2):182–9.

    Article  PubMed  CAS  Google Scholar 

  16. Doering AE, Lederer WJ. The mechanism by which cytoplasmic protons inhibit the sodium-calcium exchanger in guinea-pig heart cells. J Physiol. 1993;466:481–99.

    PubMed  CAS  Google Scholar 

  17. Schulze DH, Muqhal M, Lederer WJ, Ruknudin AM. Sodium/calcium exchanger (NCX1) macromolecular complex. J Biol Chem. 2003;278(31):28849–55.

    Article  PubMed  CAS  Google Scholar 

  18. Fujioka Y, Komeda M, Matsuoka S. Stoichiometry of Na+-Ca2+ exchange in inside-out patches excised from guinea-pig ventricular myocytes. J Physiol. 2000;523(Pt 2):339–51.

    Article  PubMed  CAS  Google Scholar 

  19. Janvier NC, Harrison SM, Boyett MR. The role of inward Na(+)-Ca2+ exchange current in the ferret ventricular action potential. J Physiol. 1997;498(Pt 3):611–25.

    PubMed  CAS  Google Scholar 

  20. Weber CR, Ginsburg KS, Bers DM. Cardiac submembrane [Na+] transients sensed by Na+-Ca2+ exchange current. Circ Res. 2003;92(9):950–2.

    Article  PubMed  CAS  Google Scholar 

  21. Shannon TR, Bers DM. Integrated Ca2+ management in cardiac myocytes. Ann NY Acad Sci. 2004;1015:28–38.

    Article  PubMed  CAS  Google Scholar 

  22. Greenstein JL, Hinch R, Winslow RL. Mechanisms of excitation-contraction coupling in an integrative model of the cardiac ventricular myocyte. Biophys J. 2006;90(1):77–91.

    Article  PubMed  CAS  Google Scholar 

  23. Sher AA, Noble PJ, Hinch R, Gavaghan DJ, Noble D. The role of the Na+/Ca2+ exchangers in Ca2+ dynamics in ventricular myocytes. Prog Biophys Mol Biol. 2008;96(1–3):377–98.

    Article  PubMed  CAS  Google Scholar 

  24. Sanders L, Rakovic S, Lowe M, Mattick PA, Terrar DA. Fundamental importance of Na+-Ca2+ exchange for the pacemaking mechanism in guinea-pig sino-atrial node. J Physiol. 2006;571(Pt 3):639–49.

    Article  PubMed  CAS  Google Scholar 

  25. Karmazyn M, Gan XT, Humphreys RA, Yoshida H, Kusumoto K. The myocardial Na(+)-H(+) exchange: structure, regulation, and its role in heart disease. Circ Res. 1999;85(9):777–86.

    PubMed  CAS  Google Scholar 

  26. Avkiran M. Basic biology and pharmacology of the cardiac sarcolemmal sodium/hydrogen exchanger. J Card Surg. 2003;18 Suppl 1:3–12.

    Article  PubMed  Google Scholar 

  27. Fliegel L. Molecular biology of the myocardial Na+/H+ exchanger. J Mol Cell Cardiol. 2008;44(2):228–37.

    PubMed  CAS  Google Scholar 

  28. Slepkov ER, Rainey JK, Sykes BD, Fliegel L. Structural and functional analysis of the Na+/H+ exchanger. Biochem J. 2007;401(3):623–33.

    Article  PubMed  CAS  Google Scholar 

  29. Cingolani HE, Ennis IL. Sodium-hydrogen exchanger, cardiac overload, and myocardial hypertrophy. Circulation. 2007;115(9):1090–100.

    Article  PubMed  Google Scholar 

  30. Karmazyn M, Kilic A, Javadov S. The role of NHE-1 in myocardial hypertrophy and remodelling. J Mol Cell Cardiol. 2008;44(4):647–53.

    Article  PubMed  CAS  Google Scholar 

  31. Dampney RA, Coleman MJ, Fontes MA, Hirooka Y, Horiuchi J, Li YW, et al. Central mechanisms underlying short- and long-term regulation of the cardiovascular system. Clin Exp Pharmacol Physiol. 2002;29(4):261–8.

    Article  PubMed  CAS  Google Scholar 

  32. Vaughan-Jones RD, Spitzer KW, Swietach P. Intracellular pH regulation in heart. J Mol Cell Cardiol. 2009;46(3):318–31.

    Article  PubMed  CAS  Google Scholar 

  33. Baumgartner M, Patel H, Barber DL. Na(+)/H(+) exchanger NHE1 as plasma membrane scaffold in the assembly of signaling complexes. Am J Physiol Cell Physiol. 2004;287(4):C844–50.

    Article  PubMed  CAS  Google Scholar 

  34. Avkiran M, Cook AR, Cuello F. Targeting Na+/H+ exchanger regulation for cardiac protection: a RSKy approach? Curr Opin Pharmacol. 2008;8(2):133–40.

    Article  PubMed  CAS  Google Scholar 

  35. Yang W, Wang H, Fliegel L. Regulation of Na+/H+ exchanger gene expression. Role of a novel poly(dA.dT) element in regulation of the NHE1 promoter. J Biol Chem. 1996;271(34):20444–9.

    Article  PubMed  CAS  Google Scholar 

  36. Gan XT, Chakrabarti S, Karmazyn M. Modulation of Na+/H+ exchange isoform 1 mRNA expression in isolated rat hearts. Am J Physiol. 1999;277(3 Pt 2):H993–8.

    PubMed  CAS  Google Scholar 

  37. Boutjdir M, Restivo M, Wei Y, Stergiopoulos K, el-Sherif N. Early afterdepolarization formation in cardiac myocytes: analysis of phase plane patterns, action potential, and membrane currents. J Cardiovasc Electrophysiol. 1994;5(7):609.

    Article  PubMed  CAS  Google Scholar 

  38. Volders PG, Vos MA, Szabo B, Sipido KR, de Groot SH, Gorgels AP, et al. Progress in the understanding of cardiac early afterdepolarizations and torsades de pointes: time to revise current concepts. Cardiovasc Res. 2000;46(3):376–92.

    Article  PubMed  CAS  Google Scholar 

  39. Fedida D, Noble D, Rankin AC, Spindler AJ. The arrhythmogenic transient inward current iTI and related contraction in isolated guinea-pig ventricular myocytes. J Physiol. 1987;392:523–42.

    PubMed  CAS  Google Scholar 

  40. Marks AR, Priori S, Memmi M, Kontula K, Laitinen PJ. Involvement of the cardiac ryanodine receptor/calcium release channel in catecholaminergic polymorphic ventricular tachycardia. J Cell Physiol. 2002;190(1):1–6.

    Article  PubMed  CAS  Google Scholar 

  41. Miura M, Boyden PA, ter Keurs HE. Ca2+ waves during triggered propagated contractions in intact trabeculae. Am J Physiol. 1998;274(1 Pt 2):H266–76.

    PubMed  CAS  Google Scholar 

  42. Wang Y, Meyer JW, Ashraf M, Shull GE. Mice with a null mutation in the NHE1 Na+-H+ exchanger are resistant to cardiac ischemia-reperfusion injury. Circ Res. 2003;93(8):776–82.

    Article  PubMed  CAS  Google Scholar 

  43. Marx SO, Reiken S, Hisamatsu Y, Jayaraman T, Burkhoff D, Rosemblit N, et al. PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts. Cell. 2000;101(4):365–76.

    Article  PubMed  CAS  Google Scholar 

  44. Stillitano F, Lonardo G, Zicha S, Varro A, Cerbai E, Mugelli A, et al. Molecular basis of funny current (If) in normal and failing human heart. J Mol Cell Cardiol. 2008;45(2):289–99.

    Article  PubMed  CAS  Google Scholar 

  45. Sipido KR, Volders PG, de Groot SH, Verdonck F, Van de Werf F, Wellens HJ, et al. Enhanced Ca(2+) release and Na/Ca exchange activity in hypertrophied canine ventricular myocytes: potential link between contractile adaptation and arrhythmogenesis. Circulation. 2000;102(17):2137–44.

    PubMed  CAS  Google Scholar 

  46. Sipido KR, Volders PG, Vos MA, Verdonck F. Altered Na/Ca exchange activity in cardiac hypertrophy and heart failure: a new target for therapy? Cardiovasc Res. 2002;53(4):782–805.

    Article  PubMed  CAS  Google Scholar 

  47. Veldkamp MW, Verkerk AO, van Ginneken AC, Baartscheer A, Schumacher C, de Jonge N, et al. Norepinephrine induces action potential prolongation and early afterdepolarizations in ventricular myocytes isolated from human end-stage failing hearts. Eur Heart J. 2001;22(11):955–63.

    Article  PubMed  CAS  Google Scholar 

  48. Benardeau A, Hatem SN, Rucker-Martin C, Le Grand B, Mace L, Dervanian P, et al. Contribution of Na+/Ca2+ exchange to action potential of human atrial myocytes. Am J Physiol. 1996;271(3 Pt 2):H1151–61.

    PubMed  CAS  Google Scholar 

  49. Allen DG, Orchard CH. The effects of changes of pH on intracellular calcium transients in mammalian cardiac muscle. J Physiol. 1983;335:555–67.

    PubMed  CAS  Google Scholar 

  50. Hulme JT, Orchard CH. Effect of acidosis on Ca2+ uptake and release by sarcoplasmic reticulum of intact rat ventricular myocytes. Am J Physiol. 1998;275(3 Pt 2):H977–87.

    PubMed  CAS  Google Scholar 

  51. Duchen MR. Mitochondria and Ca(2+)in cell physiology and pathophysiology. Cell Calcium. 2000;28(5–6):339–48.

    Article  PubMed  CAS  Google Scholar 

  52. Meissner G. Molecular regulation of cardiac ryanodine receptor ion channel. Cell Calcium. 2004;35(6):621–8.

    Article  PubMed  CAS  Google Scholar 

  53. Reeves JP, Bailey CA, Hale CC. Redox modification of sodium-calcium exchange activity in cardiac sarcolemmal vesicles. J Biol Chem. 1986;261(11):4948.

    PubMed  CAS  Google Scholar 

  54. Goldhaber JI. Free radicals enhance Na+/Ca2+ exchange in ventricular myocytes. Am J Physiol. 1996;271(3 Pt 2):H823–33.

    PubMed  CAS  Google Scholar 

  55. Amran MS, Hashimoto K, Homma N. Effects of sodium-calcium exchange inhibitors, KB-R7943 and SEA0400, on aconitine-induced arrhythmias in guinea pigs in vivo, in vitro, and in computer simulation studies. J Pharmacol Exp Ther. 2004;310(1):83–9.

    Article  PubMed  CAS  Google Scholar 

  56. Satoh H, Ginsburg KS, Qing K, Terada H, Hayashi H, Bers DM. KB-R7943 block of Ca(2+) influx via Na(+)/Ca(2+) exchange does not alter twitches or glycoside inotropy but prevents Ca(2+) overload in rat ventricular myocytes. Circulation. 2000;101(12):1441–6.

    PubMed  CAS  Google Scholar 

  57. Mukai M, Terada H, Sugiyama S, Satoh H, Hayashi H. Effects of a selective inhibitor of Na+/Ca2+ exchange, KB-R7943, on reoxygenation-induced injuries in guinea pig papillary muscles. J Cardiovasc Pharmacol. 2000;35(1):121–8.

    Article  PubMed  CAS  Google Scholar 

  58. Nakamura A, Harada K, Sugimoto H, Nakajima F, Nishimura N. Effects of KB-R7943, a novel Na+/Ca2+ exchange inhibitor, on myocardial ischemia/reperfusion injury. Nippon Yakurigaku Zasshi. 1998;111(2):105–15.

    Article  PubMed  CAS  Google Scholar 

  59. Lu HR, Yang P, Remeysen P, Saels A, Dai DZ, De Clerck F. Ischemia/reperfusion-induced arrhythmias in anaesthetized rats: a role of Na+ and Ca2+ influx. Eur J Pharmacol. 1999;365(2–3):233–9.

    Article  PubMed  CAS  Google Scholar 

  60. Watano T, Harada Y, Harada K, Nishimura N. Effect of Na+/Ca2+ exchange inhibitor, KB-R7943 on ouabain-induced arrhythmias in guinea-pigs. Br J Pharmacol. 1999;127(8):1846–50.

    Article  PubMed  CAS  Google Scholar 

  61. Takahashi K, Takahashi T, Suzuki T, Onishi M, Tanaka Y, Hamano-Takahashi A, et al. Protective effects of SEA0400, a novel and selective inhibitor of the Na+/Ca2+ exchanger, on myocardial ischemia-reperfusion injuries. Eur J Pharmacol. 2003;458(1–2):155–62.

    Article  PubMed  CAS  Google Scholar 

  62. Kuramochi T, Kakefuda A, Yamada H, Tsukamoto I, Taguchi T, Sakamoto S. Discovery of an N-(2-aminopyridin-4-ylmethyl)nicotinamide derivative: a potent and orally bioavailable NCX inhibitor. Bioorg Med Chem. 2005;13(12):4022–36.

    Article  PubMed  CAS  Google Scholar 

  63. Nagasawa Y, Zhu BM, Chen J, Kamiya K, Miyamoto S, Hashimoto K. Effects of SEA0400, a Na+/Ca2+ exchange inhibitor, on ventricular arrhythmias in the in vivo dogs. Eur J Pharmacol. 2005;506(3):249–55.

    Article  PubMed  CAS  Google Scholar 

  64. Nagy ZA, Virag L, Toth A, Biliczki P, Acsai K, Banyasz T, et al. Selective inhibition of sodium-calcium exchanger by SEA-0400 decreases early and delayed after depolarization in canine heart. Br J Pharmacol. 2004;143(7):827–31.

    Article  PubMed  CAS  Google Scholar 

  65. Duff HJ, Mitchell LB, Kavanagh KM, Manyari DE, Gillis AM, Wyse DG. Amiloride. Antiarrhythmic and electrophysiologic actions in patients with inducible sustained ventricular tachycardia. Circulation. 1989;79(6):1257–63.

    PubMed  CAS  Google Scholar 

  66. du Toit EF, Opie LH. Role for the Na+/H+ exchanger in reperfusion stunning in isolated perfused rat heart. J Cardiovasc Pharmacol. 1993;22(6):877–83.

    Article  PubMed  Google Scholar 

  67. Scholz W, Albus U, Lang HJ, Linz W, Martorana PA, Englert HC, et al. Hoe 694, a new Na+/H+ exchange inhibitor and its effects in cardiac ischaemia. Br J Pharmacol. 1993;109(2):562–8.

    PubMed  CAS  Google Scholar 

  68. Sack S, Mohri M, Schwarz ER, Arras M, Schaper J, Ballagi-Pordany G, et al. Effects of a new Na+/H+ antiporter inhibitor on postischemic reperfusion in pig heart. J Cardiovasc Pharmacol. 1994;23(1):72–8.

    Article  PubMed  CAS  Google Scholar 

  69. Theroux P, Chaitman BR, Danchin N, Erhardt L, Meinertz T, Schroeder JS, et al. Inhibition of the sodium-hydrogen exchanger with cariporide to prevent myocardial infarction in high-risk ischemic situations. Main results of the GUARDIAN trial. Guard during ischemia against necrosis (GUARDIAN) Investigators. Circulation. 2000;102(25):3032–8.

    PubMed  CAS  Google Scholar 

  70. Zeymer U, Suryapranata H, Monassier JP, Opolski G, Davies J, Rasmanis G, et al. The Na(+)/H(+) exchange inhibitor eniporide as an adjunct to early reperfusion therapy for acute myocardial infarction. Results of the evaluation of the safety and cardioprotective effects of eniporide in acute myocardial infarction (ESCAMI) trial. J Am Coll Cardiol. 2001;38(6):1644–50.

    Article  PubMed  CAS  Google Scholar 

  71. Rupprecht HJ, Vom Dahl J, Terres W, Seyfarth KM, Richardt G, Schultheibeta HP, et al. Cardioprotective effects of the Na(+)/H(+) exchange inhibitor cariporide in patients with acute anterior myocardial infarction undergoing direct PTCA. Circulation. 2000;101(25):2902–8.

    PubMed  CAS  Google Scholar 

  72. Mentzer Jr RM, Lasley RD, Jessel A, Karmazyn M. Intracellular sodium hydrogen exchange inhibition and clinical myocardial protection. Ann Thorac Surg. 2003;75(2):S700–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to András Varró .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tóth, A., Varró, A. (2011). Role of NCX1 and NHE1 in Ventricular Arrhythmia. In: Tripathi, O., Ravens, U., Sanguinetti, M. (eds) Heart Rate and Rhythm. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17575-6_30

Download citation

Publish with us

Policies and ethics