Abstract
In this paper we present an implicit dictionary with the working set property i.e. a dictionary supporting insert(e), delete(x) and predecessor(x) in \({\mathcal O}(\log n)\) time and search(x) in \({\mathcal O}(\log\ell)\) time, where n is the number of elements stored in the dictionary and ℓ is the number of distinct elements searched for since the element with key x was last searched for. The dictionary stores the elements in an array of size n using no additional space. In the cache-oblivious model the operations insert(e), delete(x) and predecessor(x) cause \({\mathcal O}(\log_B n)\) cache-misses and search(x) causes \({\mathcal O}(\log_B \ell)\) cache-misses.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bǎdoiu, M., Cole, R., Demaine, E.D., Iacono, J.: A unified access bound on comparison-based dynamic dictionaries. Theoretical Computer Science 382(2), 86–96 (2007)
Bose, P., Douïeb, K., Langerman, S.: Dynamic optimality for skip lists and B-trees. In: SODA 2008, pp. 1106–1114. SIAM, Philadelphia (2008)
Bose, P., Howat, J., Morin, P.: A distribution-sensitive dictionary with low space overhead. In: Dehne, F., et al. (eds.) WADS 2009. LNCS, vol. 5664, pp. 110–118. Springer, Heidelberg (2009)
Chan, T.M.Y., Chen, E.Y.: Optimal in-place algorithms for 3-d convex hulls and 2-d segment intersection. In: SoCG 2009, pp. 80–87. ACM, New York (2009)
Franceschini, G., Grossi, R.: Optimal worst-case operations for implicit cache-oblivious search trees. In: Dehne, F., Sack, J.-R., Smid, M. (eds.) WADS 2003. LNCS, vol. 2748, pp. 114–126. Springer, Heidelberg (2003)
Frigo, M., Leiserson, C.E., Prokop, H., Ramachandran, S.: Cache-oblivious algorithms. In: FOCS 1999, pp. 285–297. IEEE, Los Alamitos (1999)
Iacono, J.: Alternatives to splay trees with \(\mathcal{O}\)(log(n)) worst-case access times. In: SODA 2001, pp. 516–522. SIAM, Philadelphia (2001)
Mortensen, C.W., Pettie, S.: The complexity of implicit and space-efficient priority queues. In: Dehne, F., López-Ortiz, A., Sack, J.-R. (eds.) WADS 2005. LNCS, vol. 3608, pp. 49–60. Springer, Heidelberg (2005)
Munro, J.I., Suwanda, H.: Implicit data structures for fast search and update. Journal of Computer and System Sciences 21(2), 236–250 (1980)
Sleator, D.D., Tarjan, R.E.: Self-adjusting binary search trees. J. ACM 32(3), 652–686 (1985)
Williams, J.W.J.: Algorithm 232: Heapsort. Communications of the ACM 7(6), 347–348 (1964)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Brodal, G.S., Kejlberg-Rasmussen, C., Truelsen, J. (2010). A Cache-Oblivious Implicit Dictionary with the Working Set Property. In: Cheong, O., Chwa, KY., Park, K. (eds) Algorithms and Computation. ISAAC 2010. Lecture Notes in Computer Science, vol 6507. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17514-5_4
Download citation
DOI: https://doi.org/10.1007/978-3-642-17514-5_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-17513-8
Online ISBN: 978-3-642-17514-5
eBook Packages: Computer ScienceComputer Science (R0)