Skip to main content

All-Cellulosic Based Composites

  • Chapter
  • First Online:
Cellulose Fibers: Bio- and Nano-Polymer Composites

Abstract

The use of cellulosic fibers as load bearing constituents in composite materials has increased over the last decade due to their relative cheapness compared to conventional materials such as glass and aramid fibers, their ability to recycle, and because they compete well in terms of strength per weight of material. All-cellulosic based composites prepared from cellulose derivatives based matrices and microcrystalline cellulosic fibers made by direct coupling between fibers and matrix present interesting mechanical and gas permeation properties, thus being potential candidates for packaging materials. Both the cellulosic matrix and the reinforcing fibers are biocompatible and widely used in the pharmaceutical industry, which is very important for the envisaged application. In addition to their biocompatibility, cellulosic systems have the ability to form both thermotropic and lyotropic chiral nematic phases, and the composites produced from the latter show improved mechanical properties due to fiber orientation induced by the anisotropic matrix. The preparation and characterization (morphological, topographical, mechanical, gas barrier properties) of all-cellulosic based composites are described in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Manson JA, Sperling LH (1976) Polymer blends and composites. Plenum, New York

    Google Scholar 

  2. Eichhorn SJ, Dufresne A et al (2010) Review: current international research into cellulose nanofibers and nanocomposites. J Mater Sci 45:1–33

    Article  CAS  Google Scholar 

  3. Berglund LA, Peijs T (2010) Cellulose biocomposites-from bulk moldings to nanostuctured systems. MRS Bull 35:201–207

    Article  CAS  Google Scholar 

  4. Ly B, Thielemans W et al (2008) Surface functionalization of cellulose fibers and their incorporation in renewable polymeric matrices. Compos Sci Technol 68:3193–3201

    Article  CAS  Google Scholar 

  5. Peijs T, Baillie C (eds) (2003) Eco-composites. Compos Sci Technol 63:1223–1336

    Google Scholar 

  6. Mohanty AK, Misra M et al (2000) Biofibers, biodegradable polymers and biocomposites. An overview. Macromol Mater Eng 276(277):1–24

    Article  Google Scholar 

  7. Gassan J, Bledzki AK (1999) Composites reinforced with cellulose based fibers. Prog Polym Sci 24:221–274

    Article  Google Scholar 

  8. Lu JZ, Wu Q et al (2000) Chemical coupling in wood fiber and polymer composites: a review of coupling agents and treatments. Wood Fiber Sci 32:88–108

    Google Scholar 

  9. Belgacem MN, Gandini A (2005) The surface modification of cellulose fibers for use as reinforcing elements in composite materials. Compos Interf 12:41–75

    Article  CAS  Google Scholar 

  10. Borges JP, Godinho MH et al (2001) New bio-composites based on short fiber reinforced hydroxypropylcellulose films. Compos Interf 8:233–241

    Article  CAS  Google Scholar 

  11. Borges JP, Godinho MH et al (2001) Cellulose-based composite films. Mech Compos Mater 37:257–264

    Article  CAS  Google Scholar 

  12. Borges JP, Godinho MH et al (2004) Tensile properties of cellulose fiber reinforced hydroxypropylcellulose films. Polym Compos 25:102–110

    Article  CAS  Google Scholar 

  13. Borges JP (2004) PhD Thesis, FCT-UNL

    Google Scholar 

  14. Borges JP, Godinho MH (2008) Cellulose-based anisotropic composites. Mater Sci Forum 587–588:604–607

    Article  Google Scholar 

  15. Aharoni SM, Walsh EK (1979) Rigid backbone polymers. 4. Solution properties of two lyotropic mesomorphic poly(isocyanates). Macromolecules 12:271–276

    Article  CAS  Google Scholar 

  16. Ernst B, Navard P (1989) Band textures in mesomorphic (hydroxypropyl) cellulose solutions. Macromolecules 22:1419–1422

    Article  CAS  Google Scholar 

  17. Viney C, Putnam W (1995) The banded microstructure of sheared liquid-crystalline polymers. Polymer 36:1731–1741

    Article  CAS  Google Scholar 

  18. Riti JB, Cidade MT et al (1997) Shear induced textures of thermotropic acetoxypropylcellulose. J Rheol 41:1247–1259

    Article  CAS  Google Scholar 

  19. Godinho MH, Fonseca JG et al (2002) Atomic force microscopy study of hydroxypropylcellulose films prepared from liquid crystalline aqueous solutions. Macromolecules 35:5932–5936

    Article  CAS  Google Scholar 

  20. Schätzle J, Finkelmann H (1987) State of order in liquid crystalline elastomers. Mol Cryst Liq Cryst 142:85–100

    Article  Google Scholar 

  21. Cox HL (1952) The elasticity and strength of paper and other fibrous materials. Br J Appl Phys 3:72–79

    Article  Google Scholar 

  22. Nielsen LE (1970) Generalized equation for the elastic moduli of composite materials. J Appl Phys 41:4626–4627

    Article  Google Scholar 

  23. Nielsen LE, Landel RF (1994) Mechanical properties of polymers and composites. Dekker, New York

    Google Scholar 

  24. Piggott MR, Ko M et al (1993) Aligned short-fiber reinforced thermosets: experiments and analysis lend little support for established theory. Compos Sci Technol 48:291–299

    Article  CAS  Google Scholar 

  25. Hull D (1981) An introduction to composite materials. Cambridge University Press, London

    Google Scholar 

  26. Krenchel H (1964) Fiber reinforcement. Akademisk Forlag, Copenhagen

    Google Scholar 

  27. De SK, White JR (eds) (1996) Short fiber-polymer composites. Woodhead, Cambridge, England

    Google Scholar 

  28. Halpin JC, Kardos JL (1976) The Halpin-Tsai equations: a review. Polym Eng Sci 16:344–352

    Article  CAS  Google Scholar 

  29. Eichhorn SJ, Young RJ (2001) The Young’s modulus of a microcrystalline cellulose. Cellulose 8:197–207

    Article  CAS  Google Scholar 

  30. Turcsányi B, Pukánszky B et al (1988) Composition dependence of tensile yield stress in filled polymers. J Mater Sci Lett 7:160–162

    Article  Google Scholar 

  31. Pukánszky B (1990) Influence of the interface interaction on the ultimate tensile properties of polymer composites. Composites 21:255–262

    Article  Google Scholar 

  32. Queiroz DP, de Pinho MN (2005) Structural characteristics and gas permeation properties of polydimethylsiloxane/poly(propylene oxide) urethane/urea bi-soft segment membranes. Polymer 46:2346–2353

    Article  CAS  Google Scholar 

  33. Mulder M (1996) Basic principles of membrane technology. Kluwer, London

    Google Scholar 

  34. Delassus P (1997) Barrier properties. In: Brody A, Marsh K (eds) The Wiley encyclopedia of packaging technology, 2nd edn. New York, Wiley

    Google Scholar 

  35. Favier V, Canova GR et al (1995) Nanocomposite materials from latex and cellulose whiskers. Polym Adv Technol 6:351–355

    Article  CAS  Google Scholar 

  36. Favier V, Chanzy H et al (1995) Polymer nanocomposites reinforced by cellulose whiskers. Macromolecules 28:6365–6367

    Article  CAS  Google Scholar 

  37. Nishino T, Arimoto N (2007) All-cellulose composite prepared by selective dissolving of fiber surface. Biomacromolecules 8:2712–2716

    Article  CAS  Google Scholar 

  38. Soykeabkaew N, Arimoto N et al (2008) All-cellulose composites by selective dissolution of aligned lingo-cellulosic fibers. Compos Sci Technol 68:2201–2207

    Article  CAS  Google Scholar 

  39. Soykeabkaew N, Sian N et al (2009) All-cellulose nanocomposites by surface selective dissolution of bacterial cellulose. Cellulose 16:435–444

    Article  CAS  Google Scholar 

  40. Qin C, Soykeabkaew N et al (2008) The effect of fiber volume fraction on the properties of all-cellulose composites. Carbohydr Polym 71:458–467

    Article  CAS  Google Scholar 

  41. Alcock B, Cabrera NO et al (2006) Low velocity impact performance of recyclable all-polypropylene composites. Compos Sci Technol 66:1724–1737

    Article  CAS  Google Scholar 

  42. Alcock B, Cabrera NO et al (2007) The effect of temperature and strain rate on the mechanical properties of highly oriented polypropylene tapes and all-polypropylene composites. Compos Sci Technol 67:2061–2070

    Article  CAS  Google Scholar 

  43. Revol JF, Bradford H et al (1992) Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int J Biol Macromol 14:170–172

    Article  CAS  Google Scholar 

  44. Habibi Y, Lucia LA et al (2010) Cellulose nanocrystals: chemistry, self-assembly and applications. Chem Rev. doi:10.1021/cr900339w

    Google Scholar 

  45. Orts WJ, Godbout L et al (1998) Enhanced ordering of liquid crystalline suspensions of cellulose microfibrils: a small angle neutron scattering study. Macromolecules 31:5717–5725

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially sponsored by Portuguese Science and Technology Foundation through project PTDC/CTM/099595/2008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. Borges .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Borges, J.P., Godinho, M.H., Figueirinhas, J.L., de Pinho, M.N., Belgacem, M.N. (2011). All-Cellulosic Based Composites. In: Kalia, S., Kaith, B., Kaur, I. (eds) Cellulose Fibers: Bio- and Nano-Polymer Composites. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17370-7_15

Download citation

Publish with us

Policies and ethics