Skip to main content

A New Marching Cubes Algorithm for Interactive Level Set with Application to MR Image Segmentation

  • Conference paper
Advances in Visual Computing (ISVC 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6453))

Included in the following conference series:

  • 1880 Accesses

Abstract

In this paper we extend the classical marching cubes algorithm in computer graphics for isosurface polygonisation to make use of new developments in the sparse field level set method, which allows localised updates to the implicit level set surface. This is then applied to an example medical image analysis and visualisation problem, using user-guided intelligent agent swarms to correct holes in the surface of a brain cortex, where level set segmentation has failed to reconstruct the local surface geometry correctly from a magnetic resonance image. The segmentation system is real-time and fully interactive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1), 12–49 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  2. Zhukov, L., Museth, K., Breen, D., Whitaker, R., Barr, A.: Level set modeling and segmentation of DT-MRI brain data. Journal of Electronic Imaging 12(1), 125–133 (2003)

    Article  Google Scholar 

  3. Cates, J.E., Lefohn, A.E., Whitaker, R.T.: GIST: an interactive, GPU based level set segmentation tool for 3D medical images. Medical Image Analysis 8(3), 217–231 (2004)

    Article  Google Scholar 

  4. Shi, Y., Karl, W.: A fast level set method without solving PDEs. In: IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), vol. 2, pp. 97–100 (2005)

    Google Scholar 

  5. Adalsteinsson, D., Sethian, J.: A fast level set method for propagating interfaces. Journal of Computational Physics 118, 269–277 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  6. Sethian, J.: Level Set Methods and Fast Marching Methods. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  7. Whitaker, R.T.: A level-set approach to 3D reconstruction from range data. Computer Vision 29(3), 203–231 (1998)

    Article  Google Scholar 

  8. Museth, K., Breen, D.E., Whitaker, R.T., Mauch, S., Johnson, D.: Algorithms for interactive editing of level set models. Computer Graphics Forum 24(4), 821–841 (2005)

    Article  Google Scholar 

  9. Lefohn, A.E., Cates, J.E., Whitaker, R.T.: Interactive, GPU-based level sets for 3D segmentation. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2878, pp. 564–572. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  10. Feltell, D.: Self-organised virtual swarms in a continuous deformable environment. PhD thesis, The University of Nottingham, Nottingham, UK (2010)

    Google Scholar 

  11. Bourke, P.: Polygonising a scalar field (May 2009), http://local.wasp.uwa.edu.au/~pbourke/geometry/polygonise/

  12. Friston, K., Ashburner, J., Kiebel, S.J., Nichols, T., Penny, W.: Statistical Parametric Mapping: The Analysis of Functional Brain Images. Academic Press, London (2007)

    Book  Google Scholar 

  13. Zhang, Y., Brady, M., Smith, S.: Segmentation of brain MR images through a hidden Markov random field model and the expectation maximization algorithm. IEEE Transactions on Medical Imaging 20(1), 45–57 (2001)

    Article  Google Scholar 

  14. McConnell BIC: BrainWeb: Simulated brain database, Montreal Neurological Institute (2010), http://www.bic.mni.mcgill.ca/brainweb/

  15. Lefohn, A.E., Kniss, J.M., Hansen, C.D., Whitaker, R.T.: A streaming narrow-band algorithm: Interactive computation and visualization of level sets. IEEE Transactions on Visualization and Computer Graphics 10, 422–433 (2004)

    Article  Google Scholar 

  16. Feltell, D., Bai, L., Jensen, H.J.: An individual approach to modelling emergent structure in termite swarm systems. International Journal of Modelling, Identification and Control 3(1), 29–40 (2008)

    Article  Google Scholar 

  17. Feltell, D., Bai, L., Soar, R.: Level set brain segmentation with agent clustering for initialisation. In: International Conference on Bio-inspired Systems and Signal Processing (BIOSIGNALS), Funchal, Madeira, Portugal (2008)

    Google Scholar 

  18. Feltell, D., Bai, L.: 3D level set image segmentation refined by intelligent agent swarms. In: IEEE World Congress on Computational Intelligence, Barcelona, Spain (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Feltell, D., Bai, L. (2010). A New Marching Cubes Algorithm for Interactive Level Set with Application to MR Image Segmentation. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2010. Lecture Notes in Computer Science, vol 6453. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17289-2_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17289-2_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17288-5

  • Online ISBN: 978-3-642-17289-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics