Abstract
In this paper we extend the classical marching cubes algorithm in computer graphics for isosurface polygonisation to make use of new developments in the sparse field level set method, which allows localised updates to the implicit level set surface. This is then applied to an example medical image analysis and visualisation problem, using user-guided intelligent agent swarms to correct holes in the surface of a brain cortex, where level set segmentation has failed to reconstruct the local surface geometry correctly from a magnetic resonance image. The segmentation system is real-time and fully interactive.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1), 12–49 (1988)
Zhukov, L., Museth, K., Breen, D., Whitaker, R., Barr, A.: Level set modeling and segmentation of DT-MRI brain data. Journal of Electronic Imaging 12(1), 125–133 (2003)
Cates, J.E., Lefohn, A.E., Whitaker, R.T.: GIST: an interactive, GPU based level set segmentation tool for 3D medical images. Medical Image Analysis 8(3), 217–231 (2004)
Shi, Y., Karl, W.: A fast level set method without solving PDEs. In: IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), vol. 2, pp. 97–100 (2005)
Adalsteinsson, D., Sethian, J.: A fast level set method for propagating interfaces. Journal of Computational Physics 118, 269–277 (1995)
Sethian, J.: Level Set Methods and Fast Marching Methods. Cambridge University Press, Cambridge (1999)
Whitaker, R.T.: A level-set approach to 3D reconstruction from range data. Computer Vision 29(3), 203–231 (1998)
Museth, K., Breen, D.E., Whitaker, R.T., Mauch, S., Johnson, D.: Algorithms for interactive editing of level set models. Computer Graphics Forum 24(4), 821–841 (2005)
Lefohn, A.E., Cates, J.E., Whitaker, R.T.: Interactive, GPU-based level sets for 3D segmentation. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2878, pp. 564–572. Springer, Heidelberg (2003)
Feltell, D.: Self-organised virtual swarms in a continuous deformable environment. PhD thesis, The University of Nottingham, Nottingham, UK (2010)
Bourke, P.: Polygonising a scalar field (May 2009), http://local.wasp.uwa.edu.au/~pbourke/geometry/polygonise/
Friston, K., Ashburner, J., Kiebel, S.J., Nichols, T., Penny, W.: Statistical Parametric Mapping: The Analysis of Functional Brain Images. Academic Press, London (2007)
Zhang, Y., Brady, M., Smith, S.: Segmentation of brain MR images through a hidden Markov random field model and the expectation maximization algorithm. IEEE Transactions on Medical Imaging 20(1), 45–57 (2001)
McConnell BIC: BrainWeb: Simulated brain database, Montreal Neurological Institute (2010), http://www.bic.mni.mcgill.ca/brainweb/
Lefohn, A.E., Kniss, J.M., Hansen, C.D., Whitaker, R.T.: A streaming narrow-band algorithm: Interactive computation and visualization of level sets. IEEE Transactions on Visualization and Computer Graphics 10, 422–433 (2004)
Feltell, D., Bai, L., Jensen, H.J.: An individual approach to modelling emergent structure in termite swarm systems. International Journal of Modelling, Identification and Control 3(1), 29–40 (2008)
Feltell, D., Bai, L., Soar, R.: Level set brain segmentation with agent clustering for initialisation. In: International Conference on Bio-inspired Systems and Signal Processing (BIOSIGNALS), Funchal, Madeira, Portugal (2008)
Feltell, D., Bai, L.: 3D level set image segmentation refined by intelligent agent swarms. In: IEEE World Congress on Computational Intelligence, Barcelona, Spain (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Feltell, D., Bai, L. (2010). A New Marching Cubes Algorithm for Interactive Level Set with Application to MR Image Segmentation. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2010. Lecture Notes in Computer Science, vol 6453. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17289-2_36
Download citation
DOI: https://doi.org/10.1007/978-3-642-17289-2_36
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-17288-5
Online ISBN: 978-3-642-17289-2
eBook Packages: Computer ScienceComputer Science (R0)