Skip to main content

Genetic Repair Strategies Inspired by Arabidopsis thaliana

  • Conference paper
Artificial Intelligence and Cognitive Science (AICS 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6206))

Included in the following conference series:

Abstract

Recent advances in genetics controversially suggest that the model plant Arabidopsis thaliana performs genetic repair using genetic information that originates in the individual’s grandparent generation. We apply this ancestral genetic repair strategy within an Evolutionary Algorithm (EA) to solve a constraint based optimisation problem. Results indicate that the grandparent based genetic repair strategy outperforms the parent alternative. Within this framework, we investigate the impact of storing only the fittest ancestors for use as a repair template. The influence of performing repair in a fixed direction is compared to randomly varying the direction in which error detection proceeds. Finally we explore the impact of varying the direction of repair on the results produced. All results seem to support the non-Mendelian inheritance process suggested by Lolle et al.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lolle, S.J., Victor, J., Young, J., Pruitt, R.: Genome-wide non-mendelian inheritance of extra-genomic information in arabidopsis. Forensic Science International 434(1), 505–509 (2005)

    Google Scholar 

  2. Peng, Chan, Shah, Jacobsen: Increased outcrossing in hothead mutants. Nature 443(E8), 28 (2006)

    Google Scholar 

  3. Ray, A.: Plant genetics: Rna cache or genome trash? Nature 437(E1-E2) (2005)

    Google Scholar 

  4. Colorni, Dorigo, Maniezzo: Genetic algorithms and highly constrained problems: The time-table case. In: Schwefel, H.-P., Männer, R. (eds.) PPSN 1990. LNCS, vol. 496, pp. 55–59. Springer, Heidelberg (1990)

    Chapter  Google Scholar 

  5. Coello, C.C.: Theoretical and numerical constraint handling techniques in evolutionary algorithms: A survey. Computer Methods in Applied Mechanics and Engineering 191, 1245–1287 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Kalanmoy, D.: An efficient constraint handling method for genetic algorithms. Computer Methods in Applied Mechanics and Engineering 2-4(186), 311–338 (2000)

    Google Scholar 

  7. Mitchell, G., O’Donoghue, D.P.: Generepair-repair operator for genetic algorithms. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2724, pp. 235–239. Springer, Heidelberg (2003)

    Google Scholar 

  8. FitzGerald, A., O’Donoghue, D.P.: Genetic repair for optimization under constraints inspired by arabidopsis thaliana. Parallel Problem Solving From Nature, 399–408 (2008)

    Google Scholar 

  9. Arroyo, C.: A parallel repair genetic algorithm to solve the unit commitment problem. IEEE Transactions on Power Systems 17(4) (2002)

    Google Scholar 

  10. Mitchell, G.: Evolutionary computation applied to combinatorial optimisation problems. Dublin City University (2007)

    Google Scholar 

  11. Nakano, R., Yamado, T.: Conventional genetic algorithm for job shop problems. In: Proc. 4th International Conference on Genetic Algorithms, pp. 474–479 (1991)

    Google Scholar 

  12. Michalewicz, Z., Fogel, D.B.: How to solve it: modern heuristics, 1st edn. Springer, Heidelberg (2000)

    Book  MATH  Google Scholar 

  13. Frugoli, J.: Medicago truncatula handbook. Clemson University (November 2006)

    Google Scholar 

  14. Coghlan, A.: Rogue weeds defy rules of genetics. New Scientist 2492, 8 (2005)

    Google Scholar 

  15. Weigel, Jurgens: Hothead healer. Nature 434, 443 (2005)

    Article  Google Scholar 

  16. Matsumoto, M., Nishimura, T.: Mersenne twister: A 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Transactions on Modeling and Computer Simulation 8(1), 3–30 (1998)

    Article  MATH  Google Scholar 

  17. Reinalt, G.: Tsplib - a travelling salesman problem library. OSRA Journal of Computing 3, 376–384 (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

FitzGerald, A., O’Donoghue, D.P., Liu, X. (2010). Genetic Repair Strategies Inspired by Arabidopsis thaliana . In: Coyle, L., Freyne, J. (eds) Artificial Intelligence and Cognitive Science. AICS 2009. Lecture Notes in Computer Science(), vol 6206. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17080-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17080-5_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17079-9

  • Online ISBN: 978-3-642-17080-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics