Abstract
This paper provides a detailed review of tournament selection in genetic programming. It starts from introducing tournament selection and genetic programming, followed by a brief explanation of the popularity of the tournament selection in genetic programming. It then reviews issues and drawbacks in tournament selection, followed by analysis of and solutions to these issues and drawbacks. It finally points out some interesting directions for future work.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Koza, J.R.: Genetic Programming — On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)
Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer, Heidelberg (2003)
Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975)
Grefenstette, J.J., Baker, J.E.: How genetic algorithms work: A critical look at implicit parallelism. In: Schaffer, J.D. (ed.) Proceedings of the 3rd International Conference on Genetic Algorithms, pp. 20–27. Morgan Kaufmann Publishers, San Francisco (1989)
Brindle, A.: Genetic algorithms for function optimisation. PhD thesis, Department of Computing Science, University of Alberta (1981)
Fujiko, C.: An evaluation of holland’s genetic operators applied to a program generator. Master’s thesis, University of Idaho (1986)
Fujiko, C., Dickinson, J.: Using the genetic algorithm to generate lisp source code to solve the prisoner’s dilemma. In: Proceedings of the Second International Conference on Genetic Algorithms on Genetic algorithms and their application, pp. 236–240. Lawrence Erlbaum Associates, Inc., Mahwah (1987)
Banzhaf, W., Nordin, P., Keller, R., Francone, F.D.: Genetic Programming – An Introduction. In: On the Automatic Evolution of Computer Programs and its Applications. Morgan Kaufmann, San Francisco (1998)
Ferreira, C.: Gene expression programming: a new adaptive algorithm for solving problems. Complex Systems 13, 87 (2001)
Oltean, M.: Multi-expression programming. Technical report, Babes-Bolyai Univ., Romania (2006)
Oltean, M., Grosan, C.: Evolving evolutionary algorithms using multi expression programming. In: Banzhaf, W., Ziegler, J., Christaller, T., Dittrich, P., Kim, J.T. (eds.) ECAL 2003. LNCS (LNAI), vol. 2801, pp. 651–658. Springer, Heidelberg (2003)
Handley, S.: On the use of a directed acyclic graph to represent a population of computer programs. In: Proceedings of the 1994 IEEE World Congress on Computational Intelligence, Orlando, Florida, USA, vol. 1, pp. 154–159. IEEE Press, Los Alamitos (1994)
Hirasawa, K., Okubo, M., Katagiri, H., Hu, J., Murata, J.: Comparison between Genetic Network Programming (GNP) and Genetic Programming (GP). In: Proceedings of the 2001 Congress on Evolutionary Computation, vol. 2, pp. 1276–1282 (2001)
Miller, J.F., Job, D., Thomson, P.: Cartesian genetic programming. In: Poli, R., Banzhaf, W., Langdon, W.B., Miller, J., Nordin, P., Fogarty, T.C. (eds.) EuroGP 2000. LNCS, vol. 1802, pp. 131–132. Springer, Heidelberg (2000)
Poli, R.: Parallel distributed genetic programming. Technical report, School of Computer Science, University of Birmingham (1996)
Poli, R., Langdon, W.B., McPhee, N.F.: A field guide to genetic programming (2008) (With contributions by J. R. Koza), http://lulu.com , and freely available at http://lulu.com
Miller, B.L., Goldberg, D.E.: Genetic algorithms, tournament selection, and the effects of noise. Technical Report 95006, University of Illinois at Urbana-Champaign (1995)
Goldberg, D.E., Deb, K.: A comparative analysis of selection schemes used in genetic algorithms. Foundations of Genetic Algorithms, 69–93 (1991)
Koza, J.R., Keane, M.A., Streeter, M.J., Mydlowec, W., Yu, J., Lanza, G.: Genetic programming IV: Routine Human-Competitive Machine Intelligence. Kluwer Academic, Dordrecht (2003)
Harik, G.R.: Finding multimodal solutions using restricted tournament selection. In: Proceedings of the Sixth International Conference on Genetic Algorithms, pp. 24–31. Morgan Kaufmann, San Francisco (1995)
Filipović, V., Kratica, J., Tos̆ić, D., Ljubić, I.: Fine grained tournament selection for the simple plant location problem. In: 5th Online World Conference on Soft Computing Methods in Industrial Applications, pp. 152–158 (2000)
Luke, S., Panait, L.: Lexicographic parsimony pressure. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 829–836 (2002)
Matsui, K.: New selection method to improve the population diversity in genetic algorithms. In: Proceedings of 1999 IEEE International Conference on Systems, Man, and Cybernetics, pp. 625–630. IEEE, Los Alamitos (1999)
Sokolov, A., Whitley, D.: Unbiased tournament selection. In: Proceedings of Genetic and Evolutionary Computation Conference, pp. 1131–1138. ACM Press, New York (2005)
Back, T.: Selective pressure in evolutionary algorithms: A characterization of selection mechanisms. In: Proceedings of the First IEEE Conference on Evolutionary Computation, pp. 57–62 (1994)
Blickle, T., Thiele, L.: A comparison of selection schemes used in evolutionary algorithms. Evolutionary Computation 4(4), 361–394 (1997)
Branke, J., Andersen, H.C., Schmeck, H.: Global selection methods for SIMD computers. In: Fogarty, T.C. (ed.) AISB-WS 1996. LNCS, vol. 1143, pp. 6–17. Springer, Heidelberg (1996)
Miller, B.L., Goldberg, D.E.: Genetic algorithms, selection schemes, and the varying effects of noise. Evolutionary Computation 4(2), 113–131 (1996)
Motoki, T.: Calculating the expected loss of diversity of selection schemes. Evolutionary Computation 10(4), 397–422 (2002)
Blickle, T., Thiele, L.: A mathematical analysis of tournament selection. In: Proceedings of the Sixth International Conference on Genetic Algorithms, pp. 9–16 (1995)
Poli, R., Langdon, W.B.: Backward-chaining evolutionary algorithms. Artificial Intelligence 170(11), 953–982 (2006)
Xie, H., Zhang, M., Andreae, P.: Another investigation on tournament selection: modelling and visualisation. In: Proceedings of Genetic and Evolutionary Computation Conference, pp. 1468–1475 (2007)
Xie, H., Zhang, M., Andreae, P., Johnston, M.: An analysis of multi-sampled issue and no-replacement tournament selection. In: Proceedings of Genetic and Evolutionary Computation Conference, pp. 1323–1330. ACM Press, New York (2008)
Xie, H., Zhang, M., Andreae, P., Johnston, M.: Is the not-sampled issue in tournament selection critical? In: Proceedings of IEEE Congress on Evolutionary Computation, pp. 3711–3718. IEEE Press, Los Alamitos (2008)
Gathercole, C.: An Investigation of Supervised Learning in Genetic Programming. PhD thesis, University of Edinburgh (1998)
Xie, H.: Diversity control in GP with ADFs for regression tasks. In: Zhang, S., Jarvis, R.A. (eds.) AI 2005. LNCS (LNAI), vol. 3809, pp. 1253–1257. Springer, Heidelberg (2005)
Hingee, K., Hutter, M.: Equivalence of probabilistic tournament and polynomial ranking selection. In: Proceedings of IEEE Congress on Evolutionary Computation, pp. 564–571 (2008)
Xie, H., Zhang, M., Andreae, P.: Automatic selection pressure control in genetic programming. In: Proceedings of the Sixth International conference on Intelligent Systems Design and Applications, pp. 435–440. IEEE Computer Society Press, Los Alamitos (2006)
Gustafson, S.M.: An Analysis of Diversity in Genetic Programming. PhD thesis, University of Nottingham (2004)
Xie, H., Zhang, M., Andreae, P.: Population clustering in genetic programming. In: Collet, P., Tomassini, M., Ebner, M., Gustafson, S., Ekárt, A. (eds.) EuroGP 2006. LNCS, vol. 3905, pp. 190–201. Springer, Heidelberg (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Fang, Y., Li, J. (2010). A Review of Tournament Selection in Genetic Programming. In: Cai, Z., Hu, C., Kang, Z., Liu, Y. (eds) Advances in Computation and Intelligence. ISICA 2010. Lecture Notes in Computer Science, vol 6382. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16493-4_19
Download citation
DOI: https://doi.org/10.1007/978-3-642-16493-4_19
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-16492-7
Online ISBN: 978-3-642-16493-4
eBook Packages: Computer ScienceComputer Science (R0)