Skip to main content

Merging the Ranking and Selection into ITO Algorithm for Simulation Optimization

  • Conference paper

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 107))

Abstract

Due to simulation models are stochastic systems, how to account for the noise in simulation model is a rigorous issue in the field of simulation optimization. We proposed a framework, which merging the Ranking & Selection into ITO algorithm for solving simulation optimization problems in this paper. When the probability of correct choice and the parameters of indifference zone are given, Ranking & Selection + ITO algorithm can allocate the number of evaluations that each alternative needed automatically, and it can evaluate individuals by a smaller budget.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dong, W.: Simulation Optimization Based on the Hypothesis Testing and ITO Process. In: Third International Conference on Natural Computation, Haikou, China, August 7, pp. 1210–1221 (2007)

    Google Scholar 

  2. Dong, W.: Time Series Modeling Based on ITO Algorithm. In: Third International Conference on Natural Computation, Haikou, China, pp. 398–401 (2007)

    Google Scholar 

  3. Dong, W.: The Simulation Optimization Algorithm Based on the Ito Process. In: 2007 International Conference on Intelligent Computing, Qingdao, China, August 21, pp. 563–573 (2007)

    Google Scholar 

  4. Dong, W.: The Multi-Objective ITO Algorithms. In: Kang, L., Liu, Y., Zeng, S. (eds.) ISICA 2007. LNCS, vol. 4683, pp. 87–98. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  5. Liang, J.J., Qin, A.K., Suganthan, P.N., Basker, S.: Comprehensive learning particle swarm optimizer for global optimization of multimodel functions. IEEE Trans. Evol. Comput. 10(3), 281–295 (2006)

    Article  Google Scholar 

  6. Koumousis, V.K., Katsaras, C.P.: A saw-tooth genetic algorithm combining the effects of variable population size and reinitialization to enhance performance. IEEE Trans. Evol. Comput. 10(1), 19–28 (2006)

    Article  Google Scholar 

  7. Leung, Y.W., Wang, Y.P.: An orthogonal genetic algorithm with quantization for global numerical optimization. IEEE Trans. Evol. Comput. 5(1), 41–53 (2001)

    Article  Google Scholar 

  8. Ratnaweera, A., Halgamuge, S.K., Watson, H.C.: Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Trans. Evol. Comput. 8(3), 240–255 (2004)

    Article  Google Scholar 

  9. Bergh, F.V.d., Engelbrecht, A.P.: A cooperative approach to particle swarm optimization. IEEE Trans. Evol. Comput. 8(3), 225–239 (2004)

    Article  Google Scholar 

  10. Zhang, Q., Sun, J., Tsang, E., Ford, J.: Hybrid estimation of distribution algorithm for global optimization. Eng. Comput. 21(1), 91–107 (2004)

    Article  MATH  Google Scholar 

  11. Wang, Y., Dang, C.: An Evolutionary Algorithm for Global Optimization Based on Level-Set Evolution and Latin Squares. IEEE Trans. Evol. Comput. 11(5), 579–586 (2007)

    Article  Google Scholar 

  12. Krishnakumar, K., Swaminathan, R., Garg, S., Narayanaswamy, S.: Solving large parameter optimization problems using genetic algorithms. In: Proc. Guidance, Navigation

    Google Scholar 

  13. Boesel, J., Nelson, B.L., Kim, S.: Using ranking and selection to clean-up after simulation optimization. Operation Research 51(5), 814–825 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Boesel, J., Nelson, B.L., Ishii, N.: A framework for simulation optimization software. IIE Transactions 35(3), 221–229 (2003)

    Article  Google Scholar 

  15. Pichilamken, J., Nelson, B.L.: A combined procedure for optimization via simulation. ACM Transactions on Modeling and Computer Simulation 13(2), 108–133 (2003)

    Article  Google Scholar 

  16. Ho, Y.C., Cassandras, C.G., Chen, C.-H., Dai, L.: Ordinal Optimization and simulation. Journal of the Operational Research Society 51, P490–P500 (2000)

    Article  MATH  Google Scholar 

  17. Olafsson, S.: Two-stage nested partitions method for stochastic optimization Methodology and Computing in Applied probability 6, P5–P27 (2004)

    MathSciNet  Google Scholar 

  18. Shi, L., Chen, C.H.: A new algorithm for stochastic discrete resource allocation optimization. Journal of Discrete Event Dynamic Systems: Theory and Applicaticons 10, P271–P294 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kim, S.H., Nelson, B.L.: Recent advances in ranking and selection. In: Proceedings Of The 2007 Winter Simulation Conference, vol. 1-5, pp. 150–160 (2007)

    Google Scholar 

  20. Goldsman, D., kim, S.-H., Marshall, W., Nelson, B.L.: Ranking and selection procedures for steady-state simulation:perspectives and procedures INFORMS. Journal on computing 14, 2–19 (2001)

    MathSciNet  MATH  Google Scholar 

  21. Damerdji, H., Nakayama, M.K.: Two-stage multiple –comparison procedures for steady-state simulation. ACM TOMACS 9, P1–P30 (1999)

    Article  Google Scholar 

  22. Boesel, J., Nelson, B.L., Kim, S.: Using ranking and selection of discrete event dynamic systems. Journal of Optimization Theory Applications 91(2), P363–P388 (2003)

    Google Scholar 

  23. Nelson, B.L., Swann, J., Goldsman, D., Song, W.-M.T.: Simple procedures for selecting the best system when the number of alternatives is large. Operations Research 49, 950–963 (2001)

    Article  Google Scholar 

  24. Gupta, S.S.: On some multiple decision (ranking and selection) rules. Technometrics 7, 225–245 (1965)

    Article  MATH  Google Scholar 

  25. Bechhofer, R.E., Santner, T.J., Goldsman, D.: Design and Analysis of Experiments for Statistical Selection, Screening and Multiple Comparisons. John Wiley & Sons, New York (1995)

    Google Scholar 

  26. Damerdji, H., Nakayama, M.K.: Two-stage multiple-comparison procedures for steady-state simulation. ACM TOMACS 9, 1–30 (1999)

    Article  Google Scholar 

  27. Bechhofer, R.E., Elmaghraby, S., Morse, N.: A single-samplemultipledecision procedure for selecting the multinomial event which has the highest probability. Annals of Mathematical Statistics 30, 102–119 (1959)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dong, W., Yu, R., Lei, M. (2010). Merging the Ranking and Selection into ITO Algorithm for Simulation Optimization. In: Cai, Z., Tong, H., Kang, Z., Liu, Y. (eds) Computational Intelligence and Intelligent Systems. ISICA 2010. Communications in Computer and Information Science, vol 107. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16388-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16388-3_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16387-6

  • Online ISBN: 978-3-642-16388-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics