Skip to main content

Dampster-Shafer Evidence Theory Based Multi-Characteristics Fusion for Clustering Evaluation

  • Conference paper
Rough Set and Knowledge Technology (RSKT 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6401))

Included in the following conference series:

Abstract

Clustering is a widely used unsupervised learning method to group data with similar characteristics. The performance of the clustering method can be in general evaluated through some validity indices. However, most validity indices are designed for the specific algorithms along with specific structure of data space. Moreover, these indices consist of a few within- and between- clustering distance functions. The applicability of these indices heavily relies on the correctness of combining these functions. In this research, we first summarize three common characteristics of any clustering evaluation: (1) the clustering outcome can be evaluated by a group of validity indices if some efficient validity indices are available, (2) the clustering outcome can be measured by an independent intra-cluster distance function and (3) the clustering outcome can be measured by the neighborhood based functions. Considering the complementary and unstable natures among the clustering evaluation, we then apply Dampster-Shafter (D-S) Evidence Theory to fuse the three characteristics to generate a new index, termed fused Multiple Characteristic Indices (fMCI). The fMCI generally is capable to evaluate clustering outcomes of arbitrary clustering methods associated with more complex structures of data space. We conduct a number of experiments to demonstrate that the fMCI is applicable to evaluate different clustering algorithms on different datasets and the fMCI can achieve more accurate and robust clustering evaluation comparing to existing indices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Xu, R., Wunsch, D.: Survey of clustering algorithm. IEEE Trans. Neural Network 16(3), 645–678 (2005)

    Article  Google Scholar 

  2. Bezdek, J.C., Pal, N.R.: Some new indexes of cluster validity. IEEE Trans. SMC-B 28(3), 301–315 (1998)

    Google Scholar 

  3. Maulik, U., Bandyop, S.: Performance evaluation of some clustering algorithms and validity indices. IEEE Trans. Pattern Anal. Mach. Intel. 24(12), 1650–1654 (2002)

    Article  Google Scholar 

  4. Pakhira, M.K., Bandyopadhyay, S., Maulik, U.: A study of some fuzzy cluster validity indices, genetic clustering and application to pixel classification. Fuzzy Sets Syst. 155(3), 191–214 (2005)

    Article  MathSciNet  Google Scholar 

  5. Wang, J., Chiang, J.: A Cluster Validity Measure with Outlier Detection for Support Vector Clustering. IEEE Trans. SMC-B 38(1), 78–89 (2008)

    Google Scholar 

  6. Hubert, L.J., Arabie, P.: Comparing partitions. J. Classification 2, 193–218 (1985)

    Article  Google Scholar 

  7. Davies, D.L., Bouldin, D.W.: A cluster separation measure. IEEE Trans. Pattern Anal. Machine Intell. 1(4), 224–227 (1979)

    Article  Google Scholar 

  8. Xie, X.L., Beni, G.: A validity measure for fuzzy clustering. IEEE Trans. Pattern Anal. Mach. Intell. 13(8), 841–847 (1991)

    Article  Google Scholar 

  9. Bezdek, J.C.: Pattern Recognition with fuzzy objective function algorithms. Plenum Press, New York (1981)

    MATH  Google Scholar 

  10. Kim, M., Ramakrishna, R.S.: New indices for cluster validity assessment. Patt. Recog. Lett. 26, 2353–2363 (2005)

    Article  Google Scholar 

  11. Pakhira, M.K., Bandyopadhyay, S., Maulik, U.: Validity index for crisp and fuzzy clusters. Pattern Recognition 37(3), 487–501 (2004)

    Article  MATH  Google Scholar 

  12. Saha, S., Bandyopadhyay, S.: Application of a new symmetry based cluster validity index for satellite image anghamitra. IEEE Geos. Remote Sensing Letter 5(2), 166–170 (2008)

    Article  Google Scholar 

  13. Tantrum, J., Murua, A., Stuetzle, W.: Hierarchical model-based clustering of large datasets through fractionation and refractionation. Information Systems 29, 315–326 (2004)

    Article  Google Scholar 

  14. MacQueen, J.B.: Some methods for classification and analysis of multivariate observations. In: The 5th Berkeley Symposium on Mathematical and Probability, Berkeley, vol. 1, pp. 281–297 (1967)

    Google Scholar 

  15. Bezdek, J.C., Pal, S.K.: Fuzzy models for Pattern recognition. Plenum Press, New York (1992)

    Google Scholar 

  16. Dunn, J.C.: A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. J. Cybern. 3(3), 32–57 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  17. Tibshirani, R., Walther, G., Hastie, T.: Estimation the number of clusters in a dataset via the gap statistic. J. Royal Society-B 63(2), 411–423 (2000)

    Article  MathSciNet  Google Scholar 

  18. Agrawal, R., Gehrke, J., Gunopulos, D., et al.: Automatic subspace clustering of high dimensional data. Data Mining. Knowl. Disc. 11(1), 5–33 (2005)

    Article  MathSciNet  Google Scholar 

  19. Ester, M., Kriegel, H.P., et al.: A density-based algorithm for discovering clusters in large spatial datasets with noise. In: Proc. 2nd Int. Conf. KDDD 1996, Portland, Oregon, pp. 226–239 (1996)

    Google Scholar 

  20. Ma, E.W.M., Chow, T.W.S.: A new shifting grid clustering algorithm. Pattern Recognition 37, 503–514 (2004)

    Article  MATH  Google Scholar 

  21. Wang, J., Chiang, J.: A cluster validity measure with a hybrid parameter search method for support vector clustering algorithm. Pattern Recognition 41(2), 506–520 (2008)

    Article  MATH  Google Scholar 

  22. Kim, D.J., Lee, K.H., Lee, D.: On cluster validity index for estimation of the optimal number of fuzzy clusters. Pattern Recognition 37(10), 2009–2025 (2004)

    Article  Google Scholar 

  23. Yue, S., Li, P., Song, Z.: On the index of cluster validity. J. Chinese Electronic 14(3), 535–539 (2005)

    MathSciNet  Google Scholar 

  24. Kittler, J., Hatef, M., Duin, R.P., Matas, J.: On Combining Classifiers. IEEE Trans. Patt. Anal. Mach. Intell. 20(3), 226–239 (1998)

    Article  Google Scholar 

  25. Kaftandjian, V., Zhu, Y., Dupuis, O., Lyon, I.: The combined use of the evidence theory and fuzzy logic for improving multimodal nondestructive testing system. IEEE Trans. Instr. Mea. 54(4), 1968–1977 (2005)

    Article  Google Scholar 

  26. Fred, A.L.N., Jain, A.K.: Combining multiple Clusterings using evidence accumulation. IEEE Trans. Patt. Anal. Mach. Intell. 27(6), 835–851 (2005)

    Article  Google Scholar 

  27. Sheng, W., Swift, S., Zhang, L., Liu, X.: A Weighted Sum Validity Function for Clustering With a Hybrid Niching Genetic Algorithm. IEEE Trans. SMC-B 35(6), 1156–1167 (2005)

    Google Scholar 

  28. Wu, S., Chow, W.S.: Clustering of the self-organizing map using a clustering validity index based on inter-cluster and intra-cluster density. Pattern Recognition 37(2), 175–188 (2004)

    Article  MATH  Google Scholar 

  29. Zhang, W., Lee, Y.: The uncertainty of reasoning principles. Xi’an Jiaotong University Press, Xi’an (1999)

    Google Scholar 

  30. Cuzzolin, F.: A geometric approach to the theory of evidence. IEEE Trans. SMC-C 38(4), 522–534 (2008)

    Google Scholar 

  31. Regis, M., Doncescu, A., Desachy, J.: Use of Evidence theory for the fusion and the estimation of relevance of data sources: application to an alcoholic bioprocess. Traitements Signal 24(2), 115–132 (2007)

    Google Scholar 

  32. Boudraa, A., Bentabet, A., Salzensten, F., Guillon, L.: Dempster-Shafer’s probability assignment based on fuzzy membership functions. Elec. Lett. Comp. Vison. Image Anal. 4(1), 1–9 (2004)

    Google Scholar 

  33. Salzenstein, F., Boudraa, A.: Iterative estimation of Dempster-Shafer’s basic probability assignment: application tomultisensor image segment. Opt. Eng. 43(6), 1–7 (2004)

    Article  Google Scholar 

  34. Huang, Z., Ng, M.: A Fuzzy k-Modes Algorithm for Clustering Categorical Data. IEEE Trans. Fuzzy Systems 7(4), 446–452 (1999)

    Article  Google Scholar 

  35. Huang, Z., Ng, M.K., Rong, H.: Automated variable weighting in k-means type clustering. IEEE Trans. Patt. Anal. Mach. Intell. 27(3), 657–668 (2005)

    Article  Google Scholar 

  36. Pedrycz, W.: Conditional fuzzy clustering. Patt. Recog. Lett. 18(7), 791–807 (2005)

    Google Scholar 

  37. http://morden.csee.usf.edu/brfcm/brfcm-src/brfcm.c

  38. Ankerst, M., Breunig, M., Kriegel, H.P.: Ordering points to identify the clustering structure. SIGMOD Record 28(2), 49–60 (1999)

    Article  Google Scholar 

  39. UCI Machine Learning Repository, ftp://ftp.cs.cornell.edu/pub/smart/

  40. AlphaMiner2.0., http://bi.hitsz.edu.cn/alphaminer/index.htm

  41. Yue, S., Wei, M., Wang, J., Wang, H.: A general grid-clustering approach. Patt. Recog. Lett. 29(9), 1372–1384 (2008)

    Article  Google Scholar 

  42. Lange, T., Roth, V., BrauM, L., Buhmann, J.M.: Stability-Based Validation of Clustering Solutions. Neural Comput. 16(6), 1299–1323 (2004)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yue, S., Wu, T., Wang, Y., Zhang, K., Liu, W. (2010). Dampster-Shafer Evidence Theory Based Multi-Characteristics Fusion for Clustering Evaluation. In: Yu, J., Greco, S., Lingras, P., Wang, G., Skowron, A. (eds) Rough Set and Knowledge Technology. RSKT 2010. Lecture Notes in Computer Science(), vol 6401. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16248-0_70

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16248-0_70

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16247-3

  • Online ISBN: 978-3-642-16248-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics