Skip to main content

Formation and Characterization of Carbon and Ceramic Nanostructures

  • Chapter
  • First Online:
Physical Properties of Ceramic and Carbon Nanoscale Structures

Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 11))

  • 979 Accesses

Abstract

Different carbon and ceramic nanostructures (nanotubes, nanowires, nanofibres, nanorods, and nanoencapsulates) have great potential for improving our understanding of the fundamental concepts of the roles of both dimensionality and size on physical properties, as well as for many potential applications. Carbon nanotubes (CNTs) were produced in carbon arc plasma using different starting carbons, as the anode material. Low-graphitized carbons (including carbon black) proved to be much more efficient comparing to the regular graphite material. The optical emission and absorption spectroscopy was used for spectral diagnostics of the carbon arc. Carbon arc was also used to produce carbon onions containing magnetic nanocrystallites (Fe and magnetic alloys) in the core. The process was optimized and the procedure to isolate encapsulates was elaborated. Carbon nanocapsules containing Fe were also obtained via combustion synthesis from mixtures NaN3-C6Cl6-Ferrocene. This technique also proved to be very efficient to produce silicon carbide nanowires from Teflon (PTFE) and different reductants (CaSi2, Si). The protocol to isolate and efficiently purify the final product (up to 98 wt%) was proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P. Byszewski et al., Fullerene and nanotube synthesis. Plasma spectroscopy studiem. J. Phys. Chem. Solids. 58, 1679 (1997)

    ADS  Google Scholar 

  2. H. Lange et al., Influence of boron on carbon arc plasma and formation of fullerenes and nanotubes. Chem. Phys. Lett. 289, 174 (1998)

    ADS  Google Scholar 

  3. A. Huczko et al., Influence of Fe and Co/Ni on carbon arc plasma and formation of fullerenes and nanotubes. J. Phys. Chem. A 104, 10708 (2000)

    Google Scholar 

  4. H. Lange et al., Carbon plasma as a source of fullerenes and nanotubes: Optical emission studies. New Diam. Front. Carbon Technol. 11(6), 399 (2001)

    Google Scholar 

  5. H. Lange et al., Influence of gadolinium on carbon arc plasma and formation of fullerenes and nanotubes. Plasma Chem. Plasma Process. 22(4), 523 (2002)

    Google Scholar 

  6. A. Huczko et al., Hollow cathode plasma synthesis of carbon nanofiber arrays at low temperature. J. Phys. Chem. B 106, 1534 (2002)

    Google Scholar 

  7. H. Lange et al., Nanocarbon production by arc discharge in water. Carbon 41, 8, 1613 (2003)

    Google Scholar 

  8. H. Lange et al., Carbon arc plasma as a source of nanotubes: Emission spectroscopy and formation mechanism. J. Nanosc. Nanotech. 3, 51 (2003)

    Google Scholar 

  9. A. Sioda et al., Role of diamond on carbon nanostructure formation in the arc discharge. Acta Physica Slovaca 55(4), 405 (2005)

    Google Scholar 

  10. M. Bystrzejewski et al., Synthesis of heterogenous multi-walled carbon nanotubes in a carbon arc in water. Fullerenes, Nanotubes, Carbon Nanostruct 14, 207 (2006)

    Google Scholar 

  11. A. Huczko et al., Formation of SWCNTs in arc plasma: Effect of graphitization of Fe-doped anode and optical emission studies. J. Nanosc. Nanotech. 6, 1319 (2006)

    Google Scholar 

  12. H. Lange et al., Influence of carbon structure on carbon nanotube formation and carbon arc plasma. Diam. Relat. Mater. 15, 1113 (2006)

    Google Scholar 

  13. H. Lange et al., Spectroscopic study of C2 in carbon arc discharge. Specrosc. Lett. 29, 1215 (1996)

    ADS  Google Scholar 

  14. H. Lange, Spectral diagnostics of helium-carbon arc plasma during carbon nanostructure formation.  Fullerene Sci. Technol. 5, 1177 (1997)

    Google Scholar 

  15. H. Lange et al., Temperatures and column densities in carbon arc plasma. J. Phys. D: Appl. Phys. 32, 1024 (1999)

    ADS  Google Scholar 

  16. H. Lange et al., Optical emission studies of arc plasma with C, C/Fe and C/Co/Ni electrodes, in Progress in Plasma Processing of Materials, ed. by P. Fauchais (Begell House, New York, 2001), pp. 23–28

    Google Scholar 

  17. K. Saidane et al., Characteristics of a carbon arc discharge. High Temp. Material Processes. Int. J. 5, 243 (2001)

    Google Scholar 

  18. H. Lange et al., Thermal plasma processing of domestic waste incneration ashes, in Progress in Plasma Processing of Materials 2003, ed. by P. Fauchais (Begell House, New York, 2003), p. 99

    Google Scholar 

  19. X. Zhao et al., Macroscopic oriented web of single-wall carbon nanotubes. Chem. Phys. Lett. 373, 3, 266 (2003)

    ADS  Google Scholar 

  20. X. Zhao et al., Large-scale purification of single-wall carbon nanotubes prepared by electric arc discharge. Diam. Relat. Mater. 15, 1098 (2006)

    Google Scholar 

  21. S. Iijima et al., Single-shell carbon nanotubules of 1-nm diameter. Nature 363, 603 (1993)

    ADS  Google Scholar 

  22. D.S. Bethune et al., Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363, 605 (1993)

    ADS  Google Scholar 

  23. H. Lange et al., An opto-electronic control of arc gap during the formation of fullerenes and carbon nanotubes. Rev. Sci. Instrum. 68, 3723 (1997)

    ADS  Google Scholar 

  24. A. Jorio et al., Characterizing carbon nanotube samples with resonance Raman scattering. New J. Phys. 5, 139.1 (2003)

    Google Scholar 

  25. O. Łabędź et al., Influence of carbon structure of the anode on the synthesis of single-wall carbon nanotubes in a carbon arc plasma. Carbon 47, 2847 (2009)

    Google Scholar 

  26. H. Lange et al., Influence of nitrogen on carbon arc plasma and formation of fullerenes. Chem. Phys. Lett. 34, 1 (2001)

    ADS  Google Scholar 

  27. H. Lange, Optical emission studies of C2 and CN radicals in carbon arc plasma. Symp. Proc. I, 221 (1999)

    Google Scholar 

  28. A. Huczko, Heterohedral fullerenes and nanotubes: Formation and characteristics. Full. Sci. Technol. 5, 1091 (1997)

    Google Scholar 

  29. D. Jain, R. Wilhelm, An easy way to produce α-iron filled multiwalled carbon nanotubes. Carbon 45, 602 (2007)

    Google Scholar 

  30. T. Gorelik et al., Carbon onions produced by laser irradiation of amorphous silicon carbide. Chem. Phys. Lett. 373, 642 (2003)

    ADS  Google Scholar 

  31. S. Bandow et al., Raman scattering study on fullerene derived intermediates formed within single-wall carbon nanotube: From peapod to double-wall carbon nanotube. Chem. Phys. Lett. 384, 320 (2004)

    ADS  Google Scholar 

  32. T. Yamagachi et al., Synthesis of carbon nanohorn particles by simple pulsed arc discharge ignited between pre-heated carbon rods. Chem. Phys. Lett. 389, 181 (2004)

    ADS  Google Scholar 

  33. H. Song, X. Chen, Large-scale synthesis of carbon-encapsulated iron carbide nanoparticles by co-carbonization of durene with ferrocene. Chem. Phys. Lett. 374, 400 (2003)

    ADS  Google Scholar 

  34. R.H. Kodama, Magnetic nanoparticles. J. Magn. Magn. Mater. 200, 359 (1999)

    ADS  Google Scholar 

  35. Z.H. Wang et al., Microstructure and magnetic property of Fe–Co nanoparticles prepared by chemical vapor condensation process. J. Alloys Compd. 351, 319 (2003)

    Google Scholar 

  36. Y. Saito, Nanoparticles and filled nanocapsules. Carbon 33, 979 (1995)

    ADS  Google Scholar 

  37. H. Tokoro et al., Iron fine particles coated with boron nitride nanolayers synthesized by a solid phase reaction. Diam. Relat. Mater. 13, 1139 (2004)

    Google Scholar 

  38. R. Fernández-Pacheco et al., Highly magnetic silica-coated iron nanoparticles prepared by the arc-discharge method. Nanotechnology 17, 1188 (2006)

    ADS  Google Scholar 

  39. M. Mikhaylova et al., The effect of biocompatible coating layers on magnetic properties of superparamagnetic iron oxide nanoparticles. Hyperfine Interact. 156–157, 257 (2004)

    Google Scholar 

  40. M. Bystrzejewski et al., Thermal stability of carbon-encapsulated Fe–Nd–B nanoparticles. J. Alloys Compd. 423, 74 (2006)

    Google Scholar 

  41. T. Oku et al., Formation of carbon nanostructures with Ge and SiC nanoparticles prepared by direct current and radio frequency hybrid arc discharge. J. Mater. Res. 15, 2182 (2000)

    ADS  Google Scholar 

  42. W. Wu et al., Preparation of carbon-encapsulated iron carbide nanoparticles by an explosion method. Carbon 41, 317 (2003)

    Google Scholar 

  43. H. Song, X. Chen, Large-scale synthesis of carbon-encapsulated iron carbide nanoparticles by co-carbonization of durene with ferrocene. Chem. Phys. Lett. 374, 400 (2003)

    ADS  Google Scholar 

  44. P. Gould, Nanoparticles probe biosystems. Mater. Today 2, 36 (2004)

    Google Scholar 

  45. M. Bystrzejewski et al., Carbon-encapsulated magnetic nanoparticles as separable and mobile sorbents of heavy metal ions from aqueous solutions. Carbon 47, 1201 (2009)

    Google Scholar 

  46. K. Pyrzyńska, M. Bystrzejewski, Comparative study of heavy metal ions sorption onto activated carbon, carbon nanotubes, and carbon-encapsulated magnetic nanoparticles. Colloids Surf. A 362, 102 (2010)

    Google Scholar 

  47. K. Pyrzyńska, Sorption of Cd(II) onto carbon-based materiale-a comparative study. Microchim. Acta 169, 7 (2010)

    Google Scholar 

  48. M. Bystrzejewski et al., Arc plasma synthesis of (Fe-Nd-B) – containing carbon encapsulates. Solid State. Phenom. 99–100, 273 (2004)

    Google Scholar 

  49. M. Bystrzejewski, A. Huczko, Heterogenne nanoklastry węglowe: otrzymywanie, charakterystyka i perspektywy aplikacyjne. Przem. Chem. 84, 92 (2005)

    Google Scholar 

  50. M. Bystrzejewski et al., Arc plasma synthesis of carbon encapsulates containing Fe-Nd-B. J. High Temp. Mater. Proc. 9, 237 (2005)

    Google Scholar 

  51. M. Bystrzejewski et al., Arc plasma route to carbon-encapsulated magnetic nanoparticles for biomedical applications. Sens. Actuators B 109, 81 (2005)

    Google Scholar 

  52. M. Bystrzejewski et al., Carbon encapsulation of magnetic nanoparticles, Fullerenes, Nanotubes. Carbon Nanostruct. 15, 167 (2007)

    Google Scholar 

  53. M. Bystrzejewski et al., Mössbauer spectroscopy studies of carbon-encapsulated magnetic nanoparticles obtained by different routes. J. Appl. Phys. 104, 54307 (2008)

    ADS  Google Scholar 

  54. J. Borysiuk et al., Structure and magnetic properties of carbon encapsulated Fe nanoparticles obtained by arc plasma and combustion synthesis. Carbon 46, 1693 (2008)

    Google Scholar 

  55. M. Bystrzejewski et al., Bulk synthesis of carbon nanocapsules and nanotubes containing magnetic nanoparticles via low energy laser pyrolysis of ferrocene. Mater. Lett. 63, 1767 (2009)

    Google Scholar 

  56. S. Cudziło et al., Spontaneous formation of carbon-based nanostructures by thermolysis-induced carbonization of halocarbons. Carbon 43, 1778 (2005)

    Google Scholar 

  57. M. Bystrzejewski et al., Combustion synthesis route to carbon-encapsulated iron nanoparticles. Diam. Relat. Mater. 16, 225 (2007)

    Google Scholar 

  58. M. Bystrzejewski, M.H. Rumelli, Novel nanomaterials for prospective biomedical applications: Synthesis, structure and toxicity. Pol. J. Chem. 81, 1219 (2007)

    Google Scholar 

  59. M. Bystrzejewski et al., Carbon-encapsulated magnetic nanoparticles spontaneously formed by thermolysis route. Fullerenes, Nanotubes, Carbon Nanostruct. 16, 217 (2008)

    Google Scholar 

  60. M. Bystrzejewski et al., An easy one – step route to carbon – encapsulated magnetic nanopartials. Fullerenes, Nanotubes, Carbon Nanostruct. 17, 600 (2009)

    Google Scholar 

  61. M. Bystrzejewski et al., Self-sustaining high-temperature synthesis of carbon-encapsulated magnetic nanoparticles from organic and inorganic metal precursors. New Carbon Mater. 25, 81 (2010)

    Google Scholar 

  62. M. Bystrzejewski et al., RF Plasma synthesis of carbon encapsulates. Pol. J. Appl. Chem. 49, 23 (2005)

    Google Scholar 

  63. M. Bystrzejewski et al., Large scale continuous synthesis of carbon-encapsulated magnetic nanoparticles. Nanotechnology 18, 145608 (2007)

    Google Scholar 

  64. M. Bystrzejewski et al., Continuous synthesis of carbon-encapsulated magnetic nanoparticles with a minimum production of amorphous carbon. Carbon 47, 2040 (2009)

    Google Scholar 

  65. A.G. Merzhanov, Twenty years of search and findings, in Combustion and Plasma Synthesis of High-Temperature Materials, ed. by Z.A. Munir, J.B. Holt. (VCH Publishers, New York, 1990),  pp. 1–53

    Google Scholar 

  66. A.G. Merzhanov, A.K. Filonenko, O roli plamenii v mekhanizmie gorenija porokhov, Izv. Akad. Nauk, Otd. Khim. Nauk nr 3, 560 (1963)

    Google Scholar 

  67. A.G. Merzhanov, I.P. Borovinskaya, Selfpropagating high-temperature synthesis of highmelting inorganic compounds. Dokl. Akad. Nauk SSSR 204, 366 (1972)

    Google Scholar 

  68. K.A. Philpot et al., An investigation of the synthesis of nickel aluminides through gasless combustion. J. Mater. Sci. 22, 159 (1987)

    ADS  Google Scholar 

  69. M. Ouabdesselam, Z.A. Munir, The sintering of combustion-synthesized titanium diboride. J. Mater. Sci. 22, 1799 (1987)

    ADS  Google Scholar 

  70. Z.A. Munir, Synthesis of high temperature materials by self-propagating combustion methods. Am. Ceram. Soc. Bull. 67, 342 (1988)

    Google Scholar 

  71. D. Brawn et al., Developments in the processing and properties of NdFeb-type permanent magnets. J. Magn. Magn. Mater. 248, 432 (2002)

    ADS  Google Scholar 

  72. F. Tuinistra, J.L. Koenig, Raman spectrum of graphite. J. Chem. Phys. 53, 1126 (1970)

    ADS  Google Scholar 

  73. Y. Wang, Raman spectroscopy of carbon materials: Structural basis of observed spectra. Chem. Mater. 2, 557 (1990)

    Google Scholar 

  74. S. Cudziło et al., Characterization of carbonaceons materials produced by reduction of halocarbons with sodium azide. Pol. J. Appl. Chem. 49, 205 (2005)

    Google Scholar 

  75. A. Huczko et al., Combustion synthesis as a novel method for production of 1-D SiC nanostructures. J. Phys. Chem. B 109, 16244 (2005)

    Google Scholar 

  76. K.C. Patil, Advanced ceramics: Combustion synthesis and properties. Bull. Mater. Sci. 16, 533 (1993)

    Google Scholar 

  77. J. Narayan et al., Mechanism of combustion synthesis of silicon carbide. J. Appl. Phys. 75, 7252 (1994)

    ADS  Google Scholar 

  78. Z.A. Munir, Synthesis of high temperature materials by self-propagating combustion methods. Am. Ceram. Bull. 67, 342 (1988)

    Google Scholar 

  79. K.C. Patil, Advanced ceramics: Combustion synthesis and properties. Bull. Mater. Sci. 16, 533 (1993)

    Google Scholar 

  80. J.C. Toniolo et al., Synthesis of alumina powders by the glycine–nitrate combustion process. Mater. Res. Bull. 40, 561 (2005)

    Google Scholar 

  81. J. Jiang et al., Self-propagating high-temperature synthesis of α-SiAlON doped by RE (RE=Eu,Pr,Ce) and codoped by RE and Yttrium. J. Am. Ceram. Soc. 87, 703 (2004)

    Google Scholar 

  82. A. Huczko et al., Synthesis of novel nanostructures by metal-polytetrafluoroethene thermolysis. J. Phys. Chem. B 107, 2519 (2003)

    Google Scholar 

  83. A. Huczko et al., Studies on spontaneous formation of 1D nanocrystals of silicon carbide. Crystal Res. Tech. 40, 334 (2005)

    Google Scholar 

  84. M. Rümmeli et al., Modification of SiC based nanorods via a hydrogenated annealing process. Synthetic. Met. 153, 349 (2005)

    Google Scholar 

  85. A. Huczko et al., Quasi one-dimensional ceramic nanostructures spontaneously formed by combustion synthesis. Phys. Stat. Sol. (b) 243, 3297 (2006)

    ADS  Google Scholar 

  86. E.J. Conolly et al., A porous SiC ammonia sensor. Sens. Actuators B 109, 44 (2005)

    Google Scholar 

  87. E.W. Wong et al., Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nonotubes. Science 277, 1971 (1997)

    Google Scholar 

  88. J.J. Niu, J.N. Wang, Synthesis of macroscopic SiC nanowires at the gram level and their electrochemical activity with Pt loading. Acta Materialia.  57, 3084 (2009)

    MathSciNet  Google Scholar 

  89. R. Madar, Materials science: Silicon carbide in contention. Nature 430, 974 (2004)

    ADS  Google Scholar 

  90. H. Dai et al., Synthesis and characterization of carbide nanorods. Nature 375, 769 (1995)

    ADS  Google Scholar 

  91. D.H. Feng et al., Catalytic synthesis and photoluminescence of needle-shaped 3C–SiC nanowires. Solid State Comm. 128, 295 (2003)

    ADS  Google Scholar 

  92. K.-W. Chang, J.-J. Wu, Temperature-controlled catalytic growth of one-dimensional gallium nitride nanostructures using a gallium organometallic precursor. Appl. Phys. A 77, 769 (2003)

    ADS  Google Scholar 

  93. N. Keller et al., Synthesis and characterisation of medium surface area silicon carbide nanotubes. Carbon 41, 2131 (2003)

    Google Scholar 

  94. K.W. Wong et al., Field-emission characteristics of SiC nanowires prepared by chemical-vapor deposition. Appl. Phys. Lett. 75, 2918 (1999)

    ADS  Google Scholar 

  95. Y. Zhang et al., Synthesis of SiC nanorods using floating catalyst. Solid State Comm. 118, 595 (2001)

    ADS  Google Scholar 

  96. A. Huczko et al., A self-assembly SHS approach to form silicon carbide nanofibres. J. Phys. Condens. Matter 19, 395022 (2007)

    Google Scholar 

  97. M.H. Rümmeli et al., Novel catalysts, room temperature, and the importance of oxygen for the synthesis of single-walled carbon nanotubes. Nanoletters 5, 1209 (2005)

    ADS  Google Scholar 

  98. M.H. Rümmeli et al., Novel catalysts for low temperature synthesis of single wall carbon nanotubes. Phys. Stat. Sol. (b) 243, 3101 (2006)

    ADS  Google Scholar 

  99. G. Shen et al., Silicon carbide hollow nanospheres, nanowires and coaxial nanowires. Chem. Phys. Lett. 375, 177 (2003)

    ADS  Google Scholar 

  100. G.W. Sears, Mercury Whiskers. Acta Metall. 1, 457 (1953)

    Google Scholar 

  101. R.S. Wagner, W.C. Ellis, Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 4, 89 (1964)

    ADS  Google Scholar 

  102. V.M. Kevorkijan et al., Low-temperature synthesis of sinterable SiC powders by carbothermic reduction of colloidal SiO2. J. Mater. Sci. 27, 2705 (1992)

    ADS  Google Scholar 

  103. R.T.K. Baker et al., Effect of the surface state of iron on filamentous carbon formation. J. Catal. 77, 74 (1982)

    Google Scholar 

  104. S. Cudziło et al., Characterization of carbonaceons materials produced by reduction of halocarbons with sodium azide. Pol. J. Appl. Chem. 49, 205 (2005)

    Google Scholar 

  105. S. Cudziło et al., Surface properties of carbons obtained from hexachlorobenzene and hexachloroethane by combustion synthesis. Carbon 45, 103 (2007)

    Google Scholar 

  106. A. Huczko et al., Characterization of 1-D nanoSiC-derived nanoporous carbon. Phys. Stat. Sol. (b) 244, 3969 (2007)

    ADS  Google Scholar 

  107. A. Huczko et al., One – dimensional nanostructures spontaneously formed by combustion synthesis, XXth IWEP NM 2006, 4–11 March 2006, Kirchberg, Austria, Abstract Book, p. 56

    Google Scholar 

  108. A. Huczko et al., Quasi one-dimensional ceramic nanostructures spontaneously formed by combustion synthesis. Phys. Stat. Sol. (b) 243, 3297 (2006)

    ADS  Google Scholar 

  109. A. Huczko et al., A self-assembly SHS approach to form silicon carbide nanofibres. J. Phys. Condens. Matter. 19, 395022 (2007)

    Google Scholar 

  110. K. Takahashi et al., Thermal conductivity of SiC nanowire formed by combustion synthesis. High Temp.-High Pressures 37, 119 (2008)

    Google Scholar 

  111. M.H. Rümmeli et al., Hydrogen activated axial inter-conversion in SiC nanowires. J. Solid State Chem. 182, 602 (2009)

    ADS  Google Scholar 

  112. A. Huczko et al., Silicon carbide nanowires: Synthesis and cathodoluminescence. Physica Status Solidi, Phys. Status Solidi B 246, 2806 (2009)

    ADS  Google Scholar 

  113. A. Busiakiewicz et al., Silicon carbide nanowires: Chemical characterization and morphology investigations. Phys. Status Solidi B 245, 2094 (2008)

    ADS  Google Scholar 

  114. A. Busiakiewicz et al., Scanning tunneling microscopy investigations of silicon carbide nanowires. Appl. Surf. Sci. 254, 4268 (2008)

    ADS  Google Scholar 

  115. A. Busiakiewicz et al., Silicon carbide nanowires studied by scanning tunneling spectroscopy. Surf. Sci. 602, 316 (2008)

    ADS  Google Scholar 

  116. A. Busiakiewicz et al., Characterization of SiC nanowires obtained via combustion synthesis. Acta Phys. Superficierum XI, 73 (2009)

    Google Scholar 

  117. A. Busiakiewicz et al., Defects of SiC nanowires studied by STM and STS. Appl. Surf. Sci. 256, 4771 (2010)

    ADS  Google Scholar 

  118. V. Poornima et al., Epoxy/SiC nanocomposites: synthesis and characterization. Composites 10, 11 (2010)

    MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Science and Education through the Department of Chemistry, Warsaw University, under Grants No. N204 096 31/2160 (Sect. 2), N N204 132137 (Sect. 3). This research was also (Sect. 4) co-financed by the European Regional Development Fund within the Innovative Economy Operational Programme 2007–2013 (title of the project ‘Development of technology for a new generation of the hydrogen and hydrogen compounds sensor for applications in above normative conditions’ No UDA-POIG.01.03.01-14-071/08-00). We also acknowledge technical assistance and helpful discussion with M.H. Rümmeli, T. Gemming, J. Szepvolgyi, Z. Karoly, A. Grabias, W. Kaszuwara, S. Cudziło and M. Osica.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Huczko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Huczko, A., Bystrzejewski, M., Lange, H., Baranowski, P. (2011). Formation and Characterization of Carbon and Ceramic Nanostructures. In: Bellucci, S. (eds) Physical Properties of Ceramic and Carbon Nanoscale Structures. Lecture Notes in Nanoscale Science and Technology, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15778-3_1

Download citation

Publish with us

Policies and ethics