Skip to main content

Grid Sensitivity of LES Heat Transfer Results of a Turbulent Round Impinging Jet

  • Conference paper
High Performance Computing in Science and Engineering '10

Abstract

Impinging jets are used in a variety of engineering applications like in chemical reactors, mixing devices, drying and cooling applications. Good quality simulations of this highly complex flow field is a challenging task. In this work, the flow field and heat transfer of turbulent jet impingement is investigated by Large Eddy Simulation (LES). The benchmark case of a turbulent impinging jet with out swirl and excitation, recommended by ERCOFTAC, is simulated on different grids. The jet’s Reynolds number (Re) is 23000 and jet outlet-to-target wall distance (H/D) is 2. The agreement between experimental data and simulation results was improved by grid refinement in the free shear layer region behind the nozzle lip. The correlation between the heat transfer mechanism, flow kinematics and turbulence quantities was investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Azevedo, L.F.A., Webb, B.W., Queiroz, M., Pulsed air jet impingement heat transfer, Experimental Thermal and Fluid Science 8, 206–213 (1994)

    Article  Google Scholar 

  2. Baughn, J.W., Shimizu, S., Heat transfer measurement from a surface with uniform heat flux and an impinging jet, Int. J. of Heat Transfer, 111, 1096–1098 (1989)

    Article  Google Scholar 

  3. Baughn, J.W., Hechanova, A.E., Yan, X., An experimental study of entrainment effects on the heat transfer from a flat surface to a heated circular impinging jet, Journal of Heat Transfer, 113, 1023–1025 (1991)

    Article  Google Scholar 

  4. Camci, C., Herr, F., Forced Convection heat transfer enhancement using a self-oscillating impinging planar jet, J. Heat Transfer, 124, 770–782 (2002)

    Article  Google Scholar 

  5. Chung, Y.M., Luo, K.H., Sandham, N.D., Numerical study of momentum and heat transfer in unsteady impinging jets, Int. J. of Heat and Fluid Flow, 23, 592–600 (2002)

    Article  Google Scholar 

  6. Cooper, D., Jackson, D.C., Launder, B.E., Liao, G.X., Impinging jet studies for turbulence model assessment – I. Flow field experiments, Int. J. Heat Mass Transfer, 36, 2675–2684 (1993)

    Article  Google Scholar 

  7. Colonius, T., Numerically non-reflecting boundary and interface conditions for compressible flow and aeroacoustic computations, AIAA, 7, 35, 1126–1133 (1997)

    Article  MATH  Google Scholar 

  8. Cziesla, T., Tandogan, E., Mitra, N.K., Large eddy simulation of heat transfer from impinging slot jets. Numerical Heat Transfer, Part A 32, 1–17 (1997)

    Article  Google Scholar 

  9. Cziesla, T., Biswas, G., Chattopadhyay, H., Mitra, N.K., Large eddy simulation of flow and heat transfer in an impinging slot jet. Int. J. Heat and Fluid Flow 22, 500–508 (2001)

    Article  Google Scholar 

  10. Didden, N., Ho, C., Unsteady separation in a boundary layer produced by an impinging jet, J. Fluid Mech, 160, pp 235–256 (1985)

    Article  Google Scholar 

  11. Enquist, B., Majda, A., Absorbing boundary conditions for the numerical simulation of waves, Math. of Computation, 31, 139, 629–651 (1977)

    Article  Google Scholar 

  12. Fenot, M., Etude du refroidissement par impact de jets. Application aux aubes de turbines, Universite de Poitiers, France (2004)

    Google Scholar 

  13. Fox, M.D., Kurosaka, M., Hedges, L., Hirano, K., The influence of vortical structures on the thermal fields of jets, J. Fluid Mech., 255, 447–472 (1993)

    Article  Google Scholar 

  14. Gao, S., Leslie, D.C., Voke, P.R., Large eddy simulation of thermal impinging jets, Rep ME-FD/91.02 Dep. Mech. Eng., University of Surrey, Guildford, UK (1991)

    Google Scholar 

  15. Gao, S., Voke, P.R., Large Eddy Simulation of turbulent heat transport in enclosed impinging jets, Int. J. Heat and Fluid Flow, 16, 349–356 (1995)

    Article  Google Scholar 

  16. Geers, L.F., Tummers, M.J., Hanjalić, K., Experimental investigation of impinging jet arrays. Experiments in Fluids, 36, 946–958 (2004)

    Article  Google Scholar 

  17. Germano, M., Piomelli, U., Moin, P., Cabot, W.H., A dynamic subgrid-scale eddy viscosity model, Phy. Fluid, 3, 1760–1765 (1991)

    Article  MATH  Google Scholar 

  18. Giles, M.B., Non-Reflecting Boundary Conditions for Euler Equation Computations, AIAA Journal, 28, 12, 2050–2058 (1990)

    Article  Google Scholar 

  19. Giovannini, A., Kim, N.S., Impinging jet: Experimental analysis of flow field and heat transfer for assessment of turbulence models, Annals of the Assembly for International Heat Transfer Conference 13, TRB-15 (2006)

    Google Scholar 

  20. Gutmark, E., Ho, C., Preferred modes and the spreading rates of jets, Phy. Fluids, 26, No. 10, 2932–2938 (1983)

    Article  Google Scholar 

  21. Guerra, D.R.S., Su, J., Freire, A.P.S., The near wall behaviour of an impinging jet, Int. J. Heat and Mass Transfer, 48, 2829–2840 (2005)

    Article  Google Scholar 

  22. Hall, J.W., Ewing, D., The development of the large-scale structures in round impinging jets exiting long pipes at two reynolds numbers, Experiments in Fluids, 38, 50–58 (2005)

    Article  Google Scholar 

  23. Hadz̆iabdić, M., LES, RANS and Combined Simulation of Impinging Flows and Heat Transfer, TU Delft, Netherlands (2005)

    Google Scholar 

  24. Ho, C.M., Nossier, N.S., Dynamics of impinging jet. Part 1, the feedback Phenomenon, J. Fluid Mechanics, 105, 119–142 (1981)

    Article  Google Scholar 

  25. Ho, C.M., Huang, L.S., Subharmonics and vortex merging in mixing layers, J. Fluid Mechanics, 119, 443–473 (1982)

    Article  Google Scholar 

  26. Hofmann, H.M., Wärmeübergang beim pulsierenden Prallstrahl, Dissertation, Universität Karlsruhe (2005)

    Google Scholar 

  27. Hoogendoorn, C.J., The effect of turbulence on heat transfer at a stagnation point, Int. J. Heat Mass Transfer, 20, 1333–1338 (1997)

    Article  Google Scholar 

  28. Hussain, A.K.M.F., Coherent structures - reality and myth, Phy. Fluids, 26, No. 10, 2816–2850 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  29. Hwang, S.D., Cho, H.H., Effects of acoustic excitation positions on heat transfer and flow in axisymmetric impinging jet: main jet excitation and shear layer excitation, Int. J. of Heat and Fluid Flow, 24, 199–209 (2003)

    Article  Google Scholar 

  30. Hunt, J.C.R., Wray, A.A., Moin, P., Eddies, stream and convergence zones in turbulent flows, Center for Turbulence Research, CTR-S88 (1988)

    Google Scholar 

  31. Jiang, P., Guo, Y.C., Chan, C.K., Lin, W.Y., Frequency characteristics of coherent structures and their excitations in small aspect-ratio rectangular jets using large eddy simulation, Computers Fluids, 36, 611–621 (2007)

    Article  MATH  Google Scholar 

  32. Jiang, X., Zhao, H., Luo, K.H., Direct computation of perturbed impinging hot jets, Computers & Fluids, 36, 259–272 (2007)

    Article  MATH  Google Scholar 

  33. Kataoka, K., Mihata, I., Maruo, K., Suguro, M., Chigusa, T., Quasi-periodic large- scale structure responsible for the selective enhancement of impinging jet heat transfer, Proceedings of 8th International Heat transfer Conference, San Francisco, CA, USA 3 (1986)

    Google Scholar 

  34. Kataoka, K., Suguro, M., Degawa, H., Maruo, K., Mihata, I., The effect of surface renewal due to large scale eddies on jet impingement heat transfer, Int. J. Heat and Mass Transfer, No. 3, 30, 559–567 (1987)

    Article  Google Scholar 

  35. Kataoka, K., Ase, H., Sako, N., Unsteady aspects of large-scale coherent structures and impingement heat transfer in round air jets with and without controlled excitations, Int. J. of Engg. Fluid Mech., 1, 365–382 (1988)

    Google Scholar 

  36. Klein, M., Sadiki, A., Janicka, J., A digital filter based generation of inflow data for spatially direct numerical or large eddy simulations, Journal of Computational Physics, 18, 652–665 (2003)

    Article  Google Scholar 

  37. Landreth, C.C., Adrian, R.J., Impingement of a low Reynolds number Turbulent circular jet onto a flat plate at normal incidence, Experiments in Fluids 9, 74–84 (1990)

    Article  Google Scholar 

  38. Lee, J., Lee, S., Stagnation region heat transfer of a turbulent axisymmetric jet impingement, Experimental Heat Transfer, 12, 137–156 (1999)

    Article  Google Scholar 

  39. Liu, T., Sullivan, J.P., Heat transfer and flow structures in an excited circular impinging jet, Int. J. Heat and Mass Transfer, 17, 3695–3706 (1996)

    Article  Google Scholar 

  40. Lytle, D., Webb, B.W., Air jet impingement heat transfer at low nozzle-plate spacing, Int. J. Heat Mass Transfer, 137 (12), 1687–1697 (1994)

    Article  Google Scholar 

  41. Martin, H., Wärmeübergang bei Prallströmung, VDI-Waermeatlas, VDI (1998)

    Google Scholar 

  42. Mladin, E.C., Zumbrunnen, D.A., Alterations to coherent flow structures and heat transfer due to pulsations in an impinging air-jet, Int. J. Therm. Sci., 39, 236–248 (2000)

    Article  Google Scholar 

  43. Nevins, R.G., Ball, H.D., Heat transfer between a flat plate and a pulsating impinging jet, National Heat Transfer Conference Boulder, CO, ASME (1961)

    Google Scholar 

  44. Olsson, M., Fuchs, L., Large eddy simulations of a forced semi-confined circular impinging jet, Phys. Fluid, 10 (2), 476–486 (1998)

    Article  Google Scholar 

  45. Özdemir, I.B., Whitelaw, J.H., Impingement of an axis-symmetric jet on unheated and heated flat plates, J. Fluid Mech., 240, 503–532 (1992)

    Article  Google Scholar 

  46. Popiel, C.O., Trass, O., Visualisation of a free and impinging round jet, Experimental Thermal and Fluid Sciences, 4, 253–264 (1991)

    Article  Google Scholar 

  47. Poreh, M., Tsuei, Y.G., Cermak, J.E., Investigation of a turbulent radial wall jet, Journal of Applied Mechanics, 34, 457–463 (1967)

    Google Scholar 

  48. Rizk, M.H., Menon, S., Large eddy simulations of axis-symmetric excitation effects on a row of impinging jets, Physics of Fluids, 31 (7), 1892–1903 (1988)

    Article  Google Scholar 

  49. Sakakibara, J., Hishida, K., Maeda, M., Vortex structure and heat transfer in the stagnation region of an impinging plane jet (simultaneous measurements of velocity and temperature field by digital particle image velocimetry and laser induced fluorescence), Int. J. Heat Mass Transfer, 40 (13), 3163–3176 (1997)

    Article  Google Scholar 

  50. Stone, H.L., Iterative solution of implicit approximations of multidimensional partial differential equations, SIAM J. Numer. Anal., 3, 5, 530–558 (1988)

    Article  Google Scholar 

  51. Tsubokura, M., Kobayashi, T., Taniguchi, N., A numerical study on the difference of the eddy structures between plane and round impinging jet. Engineering Turbulence Modelling and Experiments-5, W. Rodi and N. Fueyo, Elsevier, Amsterdam (2002)

    Google Scholar 

  52. Tsubokura, M., Kobayashi, T., Taniguchi, N., Jones, W.P., A numerical study on the eddy structures of impinging jets excited at the inlet, Int. J. of Heat and Fluid Flow, 24, 500–511 (2003)

    Article  Google Scholar 

  53. Uddin, N., Neumann, S.O., Weigand, B., Large eddy simulation of the heat transfer due to swirling and non-swirling jet impingement, Proc. of 2008 ASME Summer Heat Transfer Conference, number HT2008-56422, Jacksonville, Florida USA (2008)

    Google Scholar 

  54. Uddin, N., Neumann, S.O., Weigand, B., Investigation of the effect of inlet velocity field exitation of turbulent impinging jet on heat transfer using large eddy simulation, Proc. 2nd International Conference on Jets, Wakes and Separated Flows, ICJWSF-2008, 2008

    Google Scholar 

  55. Uddin, N., Neumann, S.O., Weigand, B., Lammers, P., Thermal & Flow Field Analysis of Turbulent Swirling Jet Impingement Using Large Eddy Simulation, volume 08 of High Performance Computing in Science and Engineering, pages 301–315, Springer, Berlin (2008). ISBN 978-3-540-88301-2

    Google Scholar 

  56. Uddin, N., Neumann, S.O., Weigand, B., Investigation of the effect of inlet velocity field exitation of turbulent impinging jet on heat transfer using large eddy simulation, 6th International Symposium on Turbulence, Heat and Mass Transfer, Rome (2009)

    Google Scholar 

  57. Uddin, N., Neumann, S.O., Weigand, B., Understanding the dynamics and control of a turbulent impinging jet via pulsation and swirl using Large Eddy Simulation, High Performance Computing in Science and Engineering, vol. 09, Springer, Berlin (2009)

    Google Scholar 

  58. Wygnanski, I., Katz, Y., Horev, E., On the applicability of various scaling laws to the turbulent wall jet, J. Fluid Mech., 234, 669–690 (1992)

    Article  Google Scholar 

  59. Yan, X., Saniei, N., Heat Transfer Measurements From a Flat Plate to a Swirling Impinging Jets, Proceedings of 11th International Heat Transfer Conference, Kyonju, Korea (1998)

    Google Scholar 

  60. Zuckerman, N., Lior, N., Impingement heat transfer: correlations and numerical modeling, ASME J. Heat Transfer, 127, 544–552 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Olaf Neumann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Neumann, S.O., Uddin, N., Weigand, B. (2011). Grid Sensitivity of LES Heat Transfer Results of a Turbulent Round Impinging Jet. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering '10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15748-6_24

Download citation

Publish with us

Policies and ethics