Skip to main content

The Treatment of Electronic Excitations in Atomistic Simulations of Radiation Damage—A Brief Review

  • Chapter
  • First Online:
The Modelling of Radiation Damage in Metals Using Ehrenfest Dynamics

Part of the book series: Springer Theses ((Springer Theses))

Abstract

The material of this chapter closely follows the contents of a review article [1] written by the present author and submitted for publication in the Institute of Physics journal Reports on Progress in Physics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    See references [28] for details of various aspects of radiation damage.

  2. 2.

    Such quantities have the dimensions of a force, and, indeed, the term ‘stopping force’ is gaining currency. But historically ‘stopping power’ has been prevalent and we shall use it here.

  3. 3.

    The original derivation is in German [14]. Sigmund [5] has provided a thorough English language treatment.

  4. 4.

    SRIM stands for ‘the stopping and range of ions in matter’.

  5. 5.

    At higher velocities v > v 0, this simple picture of a retarded screening response becomes much more complicated. For instance, strong oscillations appear in the induced charge density. A full discussion of these so-called wake effects is included in the review by Echenique et al. [7].

  6. 6.

    Note that some more recent work with time-dependent DFT (Campillo et al. [57] and Pitarke and Campillo [58]) and a linear combination of atomic orbitals approach (Dorado and Flores [59]) is capable of predicting the stopping force on a channelling ion as a function of the distance of the ion from the central axis of the path. Such models fall short of incorporating a full dependence on the surrounding atomic environment, though.

  7. 7.

    The Wigner–Seitz radius is defined as the radius of a spherical volume equivalent to the volume per atom in the solid, i.e. \(\frac{4}{3}\pi r_0^3=1/n_{\rm a}\) for a number density of atoms n a.

  8. 8.

    Similar models have been used by Ivanov and Zhigilei [102, 103] and Duvenbeck et al. [104106], but they include a less full description of the physics of energy exchange and so we will not discuss them here.

  9. 9.

    Note that figures 3.14 and 3.13 cannot be properly interpreted at lower values of the coupling \((\beta_{\rm p}/M_I \,\lesssim\, 1\,\hbox{ps}^{-1})\). The electronic stopping power was not included in simulations using a homogeneous thermostat (βs = 0) and so the impact of allowing the electrons to heat up is entangled with that of a higher average damping unless βp ≫ βs.

  10. 10.

    See, for example, references [54] and [113] for details of the theory.

References

  1. Race, C.P., Mason, D.R., Finnis, M.W., Foulkes, W.M.C., Horsfield, A.P., Sutton, A.P.: The treatment of electronic excitations in atomistic models of radiation damage in metals. Rep. Prog. Phys. 73, 116501 (2010)

    Article  ADS  Google Scholar 

  2. Ziegler, J.F., Biersack, J.P., Littmark, U.: The Stopping and Range of Ions in Solids. Pergamon, New York (1985)

    Google Scholar 

  3. Sigmund, P.: Stopping of Heavy Ions—A Theoretical Approach. Springer, Berlin (2004)

    Book  Google Scholar 

  4. Seitz, F., Koehler, J.S.: Displacement of atoms during irradiation. Solid State Phys. Adv. Res. Appl. 2, 305–448 (1956)

    Google Scholar 

  5. Sigmund, P.: Particle Penetration and Radiation Effects—General Aspects and Stopping of Swift Point Charges. Springer, Berlin (2006)

    Google Scholar 

  6. Bohr, N.: The penetration of atomic particles through matter. Matematisk Fysiske Meddelelser—Kongelige Danske Videnskabernes Selskab 18(8) (1948)

    Google Scholar 

  7. Echenique, P.M., Flores, F., Ritchie,R.H.: Dynamic screening of ions in condensed matter. Solid State Phys. Adv. Res. Appl. 43, 229–308 (1990)

    Google Scholar 

  8. Averback, R.S., Diaz de la Rubia, T.: Displacement damage in irradiated metals and semiconductors. Solid State Phys. Adv. Res. Appl. 51, 281–402 (1997)

    Google Scholar 

  9. Koponen, I.: Energy transfer between electrons and ions in dense displacement cascades. Phys. Rev. B 47(21), 14011–14019 (1993)

    Article  ADS  Google Scholar 

  10. URL http://www.srim.org

    Google Scholar 

  11. Thomson, J.J.: Ionization by moving electrified particles. Philos. Mag. 23(136), 449–457 (1912)

    Google Scholar 

  12. Darwin, C.G.: A theory of the absorption and scattering of the α rays. Philos. Mag. 13, 901–920 (1912)

    Google Scholar 

  13. Bohr, N.: On the theory of the decrease of velocity of moving electrified particles on passing through matter. Philos. Mag. 23(2), 10–31 (1912)

    MathSciNet  Google Scholar 

  14. Bethe, H.: Zur theorie des durchgangs schneller korpuskularstrahlen durch materie. Ann. Phys. 397(3), 325–400 (in German)

    Article  Google Scholar 

  15. Schiff, L.I.: Quantum Mechanics. McGraw-Hill, New York (1955)

    MATH  Google Scholar 

  16. URL http://www.exphys.uni-linz.ac.at/stopping/

    Google Scholar 

  17. Bloch, F.: Bremsvermögen von atomen mit mehreren elektronen. Zeitschrift für Physik A: Hadrons and Nuclei 81(5), 363–376 (1933)

    Article  ADS  MATH  Google Scholar 

  18. Ziegler, J.F.: Stopping of energetic light ions in elemental matter. J. Appl. Phys. 85(3), 1249–1272

    Article  ADS  Google Scholar 

  19. Lindhard, J., Sorensen, A.H.: Relativistic theory of stopping for heavy ions. Phys. Rev. A 53(4), 2443–2456 (1996)

    Article  ADS  Google Scholar 

  20. Ashcroft, N.W., Mermin, N.D.: Solid State Physics. Thomson, Toronto (1976)

    Google Scholar 

  21. Smith, F.M., Birnbaum, W., Barkas, W.H.: Measurements of meson masses and related quantities. Phys. Rev. 91(3), 765–766

    Article  ADS  Google Scholar 

  22. Barkas, W.H., Dyer, J.N., Heckman, H.H.: Resolution of the Σ-mass anomaly. Phys. Rev. Lett. 11(1), 26–28 (1963)

    Article  ADS  Google Scholar 

  23. Andersen, H.H., Simonsen, H., Srensen, H.: An experimental investigation of charge-dependent deviations from the Bethe stopping power formula. Nucl. Phys. A 125(1), 171–175 (1969)

    Article  ADS  Google Scholar 

  24. Ashley, J.C., Ritchie, R.H., Brandt, W.: z 3 1 effect in the stopping power of matter for charged particles. Phys. Rev. B 5(7), 2393–2397 (1972)

    Article  ADS  Google Scholar 

  25. Lindhard, J.: The Barkas effect—or z 3 1, z 4 1-corrections to stopping of swift charged particles. Nucl. Instrum. Methods 132,1–5 (1976)

    Article  ADS  Google Scholar 

  26. Northcliffe, L.C.: Passage of heavy ions through matter. Ann. Rev. Nucl. Sci. 13(1), 67–102 (1963)

    Article  ADS  Google Scholar 

  27. Northcliffe, L.C.: Energy loss and effective charge of heavy ions in aluminum. Phys. Rev. 120(5), 1744–1757 (1960)

    Article  ADS  Google Scholar 

  28. Yarlagadda, B.S., Robinson, J.E., Brandt, W.: Effective-charge theory and the electronic stopping power of solids. Phys. Rev. B 17(9), 3473–3483 (1978)

    Article  ADS  Google Scholar 

  29. Brandt, W., Kitagawa, M.: Effective stopping-power charges of swift ions in condensed matter. Phys. Rev. B 25(9), 5631–5637 (1982)

    Article  ADS  Google Scholar 

  30. Sigmund, P.: Charge-dependent electronic stopping of swift nonrelativistic heavy ions. Phys. Rev. A 56(5), 3781–3793 (1997)

    Article  ADS  Google Scholar 

  31. Sigmund, P., Schinner, A.: Binary stopping theory for swift heavy ions. Eur. Phys. J. D At. Mol. Opt. Plasma Phys. 12(3), 425–434

    Article  Google Scholar 

  32. Sigmund, P., Schinner, A.: Binary theory of electronic stopping. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 195(1–2), 64–90 (2002)

    Article  ADS  Google Scholar 

  33. Grüner, F., Bell, F., Assmann, W., Schubert, M.: Integrated approach to the electronic interaction of swift heavy ions with solids and gases. Phys. Rev. Lett. 93(21), 213201 (2004)

    Article  ADS  Google Scholar 

  34. Grande, P.L., Schiwietz, G.: Impact-parameter dependence of the electronic energy loss of fast ions. Phys. Rev. A 58(5), 3796–3801 (1998)

    Article  Google Scholar 

  35. Schiwietz, G., Grande, P.L.: A unitary convolution approximation for the impact-parameter dependent electronic energy loss. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 153(1–4), 1–9 (1999)

    Article  ADS  Google Scholar 

  36. Schiwietz, G.: Coupled-channel calculation of stopping powers for intermediate energy light ions penetrating atomic H and He targets. Phys. Rev. A 42(1), 296–306 (1990)

    Article  ADS  Google Scholar 

  37. Grande, P.L., Schiwietz, G.: The unitary convolution approximation for heavy ions. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 195(1–2), 55–63 (2002)

    Article  ADS  Google Scholar 

  38. Blazevic, A., Bohlen, H.G., von Oertzen, W.: Charge-state changing processes for Ne ions passing through thin carbon foils. Phys. Rev. A 61(3), 32901 (2000)

    Article  ADS  Google Scholar 

  39. Blazevic, A., Bohlen, H.G., von Oertzen, W.: Stopping power of swift neon ions in dependence on the charge state in the non-equilibrium regime. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 190(1–4), 64–68 (2002)

    Article  ADS  Google Scholar 

  40. Baurichter, A., Sigmund, P., Srensen, A.H.: Panel discussion on stopping of heavy ions. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 195(1–2), 224–231 (2002)

    Article  ADS  Google Scholar 

  41. Lindhard, J., Scharff, M.: Energy loss in matter by fast particles of low charge. Matematisk Fysiske Meddelelser—Kongelige Danske Videnskabernes Selskab 27(15), 1–31 (1953)

    Google Scholar 

  42. Paul, H., Schinner, A.: An empirical approach to the stopping power of solids and gases for ions from 3Li to 1 8Ar. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 179(3), 299–315 (2001)

    Article  ADS  Google Scholar 

  43. Paul, H., Schinner, A.: An empirical approach to the stopping power of solids and gases for ions from 3Li to 18Ar—Part II. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 195(1–2), 166–174 (2002)

    Article  ADS  Google Scholar 

  44. Paul, H., Schinner, A.: Judging the reliability of stopping power tables and programs for heavy ions. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 209, 252–258 (2003)

    Article  ADS  Google Scholar 

  45. Firsov, O.B.: A quantitative interpretation of the mean electronic excitation energy in atomic collisions. Soviet Physics JETP 36,1076 (1959)

    Google Scholar 

  46. Lindhard, J., Scharff, M.: Energy dissipation by ions in the keV region. Phys. Rev. 124(1), 128–130 (1961)

    Article  ADS  Google Scholar 

  47. Tilinin, I.S.: Quasiclassical expression for inelastic energy losses in atomic particle collisions below the bohr velocity. Phys. Rev. A 51(4), 3058–3065 (1995)

    Article  ADS  Google Scholar 

  48. Fermi, E., Teller, E.: The capture of negative mesotrons in matter. Phys. Rev. 72(5), 399–408 (1947)

    Article  ADS  MATH  Google Scholar 

  49. Lindhard, J.: On the properties of a gas of charged particles. Matematisk Fysiske Meddelelser—Kongelige Danske Videnskabernes Selskab 28(8), (1954)

    Google Scholar 

  50. Ritchie, R.H.: Interaction of charged particles with a degenerate Fermi–Dirac electron gas. Phys. Rev. 114(3),644–654 (1959)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  51. Lindhard, J., Winther, A.: Stopping power of electron gas and equipartition rule. Matematisk Fysiske Meddelelser—Kongelige Danske Videnskabernes Selskab 34(4),1–21 (1964)

    Google Scholar 

  52. Almbladh C.O., von Barth U., Popovic Z.D., Stott M.J. (1976) Screening of a proton in an electron gas. Phys. Rev. B 14(6), 2250–2254 (1976)

    Article  ADS  Google Scholar 

  53. Kohanoff, J.: Electronic Structure Calculations for Solids and Molecules: Theory and Computational Methods. Cambridge University Press, Cambridge, UK (2006)

    Book  MATH  Google Scholar 

  54. Gross, E.K.U., Dobson, J.F., Petersilka, M.: Density Functional Theory of Time-Dependent Phenomena, volume 181 of Topics in Current Chemistry. Springer, Berlin (1996)

    Google Scholar 

  55. Echenique, P.M., Nieminen, R.M., Ashley, J.C., Ritchie, R.H.: Nonlinear stopping power of an electron gas for slow ions. Phys. Rev. A 33(2), 897–904 (1986)

    Article  ADS  Google Scholar 

  56. Arista, N.R.: Energy loss of ions in solids: non-linear calculations for slow and swift ions. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 195(1–2), 91–105 (2002)

    Article  ADS  Google Scholar 

  57. Campillo, I., Pitarke, J.M., Eguiluz, A.G.: Electronic stopping power of aluminum crystal. Phys. Rev. B 58(16), 10307–10314 (1998)

    Article  ADS  Google Scholar 

  58. Pitarke, J.M., Campillo, I.: Band structure effects on the interaction of charged particles with solids. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 164–165, 147–160 (2000)

    Google Scholar 

  59. Dorado, J.J., Flores, F.: Molecular-orbital theory for the stopping power of atoms in the low-velocity regime: the case of helium in alkali metals. Phys. Rev. A 47(4), 3062–3072 (1993)

    Article  ADS  Google Scholar 

  60. Grimvall, G.: The Electron–Phonon Interaction in Metals. North-Holland Publishing Company, Oxford, UK (1981)

    Google Scholar 

  61. Ziman, J.M.: Electrons and Phonons. Oxford University Press, Oxford, UK (2001)

    Book  MATH  Google Scholar 

  62. Flynn, C.P., Averback, R.S.: Electron–phonon interactions in energetic displacement cascades. Phys. Rev. B 38(10), 7118–7120 (1988)

    Article  ADS  Google Scholar 

  63. Ashcroft, N.W., Mermin, N.D.: Solid State Physics, pp. 52. Thomson, Toronto (1976)

    Google Scholar 

  64. Finnis, M.W., Agnew, P., Foreman, A.J.E.: Thermal excitation of electrons in energetic displacement cascades. Phys. Rev. B 44(2), 567–574 (1991)

    Article  ADS  Google Scholar 

  65. Allen, P.B.: Theory of thermal relaxation of electrons in metals. Phys. Rev. Lett. 59 (13), 1460–1463 (1987)

    Article  ADS  Google Scholar 

  66. Kaganov, M.I., Lifshitz, I.M., Tanatorov, L.V.: Relaxation between electrons and the crystalline lattice. J. Exp. Theor. Phys. 4(2), 173–178 (1956)

    Google Scholar 

  67. Messiah, A.: Quantum Mechanics. Dover Publications, Mineola, NY (1999)

    Google Scholar 

  68. Gao, F., Bacon, D.J., Flewitt, P.E.J., Lewis, T.A.: The effects of electron–phonon coupling on defect production by displacement cascades in α-iron. Model. Simul. Mater. Sci. Eng. 6(5), 543–556 (1998)

    Article  ADS  Google Scholar 

  69. Wang, Z.G., Dufour, C., Paumier, E., Toulemonde, M.: The Se sensitivity of metals under swift-heavy-ion irradiation: a transient thermal process. J. Phys. Condens. Matter 6(34), 6733–6750 (1994)

    Article  ADS  Google Scholar 

  70. Race, C.P., Mason, D.R., Sutton, A.P.: Electronic excitations and their effect on the interionic forces in simulations of radiation damage in metals. J. Phys. Condens. Matter 21(11), 115702

    Article  ADS  Google Scholar 

  71. Qiu, T.Q., Tien, C.L.: Short-pulse laser heating on metals. Int. J. Heat Mass Transf. 35(3), 719–726 (1992)

    Article  ADS  Google Scholar 

  72. Brorson, S.D., Kazeroonian, A., Moodera, J.S., Face, D.W., Cheng, T.K., Ippen, E.P., Dresselhaus, M.S., Dresselhaus, G.: Femtosecond room-temperature measurement of the electron–phonon coupling constant λ in metallic superconductors. Phys. Rev. Lett. 64(18), 2172–2175 (1990)

    Article  ADS  Google Scholar 

  73. Elsayed-Ali, H.E., Norris, T.B., Pessot, M.A., Mourou, G.A.: Time-resolved observation of electron–phonon relaxation in copper. Phys. Rev. Lett. 58(12),1212–1215 (1987)

    Article  ADS  Google Scholar 

  74. Bennemann, K.H.: Ultrafast dynamics in solids. J. Phys. Condens. Matter 16(30), R995–R1056 (2004)

    Article  ADS  Google Scholar 

  75. Yoshida M.: Distribution of interstitials and vacancies produced by an incident and fast neutron. J. Phys. Soc. Jpn. 16(1), 44–50 (1961)

    Article  ADS  Google Scholar 

  76. Oen, O.S., Holmes, D.K., Robinson, M.T.: Ranges of energetic atoms in solids. J. Appl. Phys. 34(2), 302–312 (1963)

    Article  ADS  Google Scholar 

  77. Oen, O.S., Robinson, M.T.: Monte carlo range calculations for a Thomas–Fermi potential. J. Appl. Phys. 35(8), 2515–2521 (1964)

    Article  ADS  Google Scholar 

  78. Beeler, J.R., Besco, D.G.: Range and damage effects of tunnel trajectories in a wurtzite structure. J. Appl. Phys. 34(9), 2873–2878 (1963)

    Article  ADS  Google Scholar 

  79. Robinson, M.T., Oen, O.S.: The channeling of energetic atoms in crystal lattices. Appl. Phys. Lett. 2(2), 30–32 (1963)

    Article  ADS  Google Scholar 

  80. Robinson, M.T., Ordean, S.O.: Computer studies of the slowing down of energetic atoms in crystals. Phys. Rev. 132(6), 2385–2398 (1963)

    Article  ADS  Google Scholar 

  81. Piercy, G.R., Brown, F., Davies, J.A., McCargo, M.: Experimental evidence for the increase of heavy ion ranges by channeling in crystalline structure. Phys. Rev. Lett. 10(9), 399–400 (1963)

    Article  ADS  Google Scholar 

  82. Robinson, M.T., Torrens, I.M.: Computer simulation of atomic-displacement cascades in solids in the binary-collision approximation. Phys. Rev. B 9(12), 5008–5024 (1974)

    Article  ADS  Google Scholar 

  83. Beeler, J.R.: Vacancy and interstitial cluster production in neutron-irradiated α-iron. J. Appl. Phys. 37(8), 3000–3009 (1966)

    Article  ADS  Google Scholar 

  84. Beeler, J.R.: Primary damage state in neutron-irradiated iron. J. Appl. Phys. 35(7), 2226–2236 (1964)

    Article  ADS  Google Scholar 

  85. Beeler, J.R.: Displacement spikes in cubic metals. I. α-Iron, copper, and tungsten. Phys. Rev. 150(2), 470–487 (1966)

    Article  ADS  Google Scholar 

  86. Gibson, J.B., Goland, A.N., Milgram, M., Vineyard, G.H.: Dynamics of radiation damage. Phys. Rev. 120(4), 1229–1253 (1960)

    Article  ADS  Google Scholar 

  87. Malerba, L.: Molecular dynamics simulation of displacement cascades in Fe: a critical review. J. Nucl. Mater. 351(1–3), 28–38 (2006)

    Article  ADS  Google Scholar 

  88. Diaz de la Rubia, T.: Irradiation-induced defect production in elemental metals and semiconductors: a review of recent molecular dynamics studies. Ann. Rev. Mater. Sci. 26, 613–649 (1996)

    Article  ADS  Google Scholar 

  89. Nordlund, K., Ghaly, M., Averback, R.S., Caturla, M., Diaz de la Rubia, T., Tarus, J.: Defect production in collision cascades in elemental semiconductors and fcc metals. Phys. Rev. B 57(13), 7556–7570 (1998)

    Article  ADS  Google Scholar 

  90. Nordlund, K., Ghaly, M., Averback, R.S.: Mechanisms of ion beam mixing in metals and semiconductors. J. Appl. Phys. 83(3), 1238–1246 (1998)

    Article  ADS  Google Scholar 

  91. Nordlund, K., Wei, L., Zhong, Y., Averback, R.S.: Role of electron–phonon coupling on collision cascade development in Ni, Pd, and Pt. Phys. Rev. B 57(22), R13965–R3968 (1998)

    Article  ADS  Google Scholar 

  92. Zhong, Y., Nordlund, K., Ghaly, M., Averback, R.S.: Defect production in tungsten: a comparison between field-ion microscopy and molecular-dynamics simulations. Phys. Rev. B 58(5), 2361–2364 (1998)

    Article  ADS  Google Scholar 

  93. Kapinos, V.G., Bacon, D.J.: Influence of ion–electron interaction on the formation mechanism of depleted zones in displacement cascades in metals. Phys. Rev. B 50(18), 13194–13203 (1994)

    Article  ADS  Google Scholar 

  94. Caro, A., Victoria, M.: Ion–electron interaction in molecular-dynamics cascades. Phys. Rev. A 40(5), 2287–2291 (1989)

    Article  ADS  Google Scholar 

  95. Finnis, M.W.: Interatomic Forces in Condensed Matter. Oxford Materials. Oxford University Press, Oxford (2003)

    Google Scholar 

  96. Kitagawa, M., Ohtsuki, Y.H.: Inelastic scattering of slow ions in channeling. Phys. Rev. B 9(11), 4719–4723 (1974)

    Article  ADS  Google Scholar 

  97. Echenique, P.M., Nieminen, R.M., Ritchie, R.H.: Density functional calculation of stopping power of an electron gas for slow ions. Solid State Commun. 37(10), 779–781 (1981)

    Article  ADS  Google Scholar 

  98. Prönnecke, S., Caro, A., Victoria, M., Diaz de la Rubia, T., Guinan, M.W.: The effect of electronic energy loss on the dynamics of thermal spikes in Cu. J. Mater. Res. 6(3), 483–491 (1991)

    Article  ADS  Google Scholar 

  99. Duffy, D.M., Rutherford, A.M.: Including the effects of electronic stopping and electron–ion interactions in radiation damage simulations. J. Phys. Condens. Matter 19(1), 016207 (2007)

    Article  ADS  Google Scholar 

  100. Duffy, D.M., Itoh, N., Rutherford, A.M., Stoneham, A.M.: Making tracks in metals. J. Phys. Condens. Matter 20(8), 082201 (2008)

    Article  ADS  Google Scholar 

  101. Rutherford, A.M., Duffy, D.M.: The effect of electron–ion interactions on radiation damage simulations. J. Phys. Condens. Matter 19(49), 496201 (2007)

    Article  Google Scholar 

  102. Ivanov, D.S., Zhigilei, L.V.: Combined atomistic-continuum modeling of shortpulse laser melting and disintegration of metal films. Phys. Rev. B 68(6), 64114 (2003)

    Article  ADS  Google Scholar 

  103. Ivanov, D.S., Zhigilei, L.V.: Kinetic limit of heterogeneous melting in metals. Phy. Rev. Lett. 98(19), 195701 (2007)

    Article  ADS  Google Scholar 

  104. Duvenbeck, A., Sroubek, Z., Wucher, A.: Electronic excitation in atomic collision cascades. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 228(1–4), 325–329 (2005)

    Article  ADS  Google Scholar 

  105. Duvenbeck, A., Sroubek, F., Sroubek, Z., Wucher, A.: Computer simulation of low-energy electronic excitations in atomic collision cascades. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 225(4), 464–477 (2004)

    Article  ADS  Google Scholar 

  106. Duvenbeck, A., Wucher, A.: Low-energy electronic excitation in atomic collision cascades: a nonlinear transport model. Phys. Rev. B (Condens. Matter Mater. Phys.) 72(16), 165408, 2005

    Article  ADS  Google Scholar 

  107. Horsfield, A.P., Bowler, D.R., Fisher, A.J., Todorov, T.N., Sanchez, C.G.: Correlated electron–ion dynamics: the excitation of atomic motion by energetic electrons. J. Phys. Condens. Matter 17, 4793–4812 (2005)

    Article  ADS  Google Scholar 

  108. Horsfield, A.P., Bowler, D.R., Fisher, A.J., Todorov, T.N., Sanchez, C.: Beyond Ehrenfest: correlated non-adiabatic molecular dynamics. J. Phys. Condens. Matter 16(46), 8251–8266 (2004)

    Article  ADS  Google Scholar 

  109. McEniry, E.J., Bowler, D.R., Dundas, D., Horsfield, A.P., Sánchez, C.G., Todorov, T.N.: Dynamical simulation of inelastic quantum transport. J. Phys. Condens. Matter 19, 196201 (2007)

    Article  ADS  Google Scholar 

  110. McEniry, E.J., Frederiksen, T., Todorov, T.N., Dundas, D., Horsfield, A.P.: Inelastic quantum transport in nanostructures: the self-consistent born approximation and correlated electron–ion dynamics. Phys. Rev. B 78, 35446 (2008)

    Article  ADS  Google Scholar 

  111. Stella, L., Meister, M., Fisher, A.J., Horsfield, A.P.: Robust non-adiabatic molecular dynamics for metals and insulator. J. Phys. Chem. 127, 214104 (2007)

    Article  Google Scholar 

  112. Pruneda, J.M., Sanchez-Portal, D., Arnau, A., Juaristi, J.I., Artacho, E.: Electronic stopping power in LiF from first principles. Phys. Rev. Lett. 99(23), 235501 (2007)

    Article  ADS  Google Scholar 

  113. Joubert, D. (ed.): Density Functionals : Theory and Applications. Springer, Berlin (1997)

    Google Scholar 

  114. Auth, C., Mertens, A., Winter, H., Borisov, A. (1998) Threshold in the stopping of slow protons scattered from the surface of a wide-band-gap insulator. Phys. Rev. Lett. 81(22), 4831–1834 (1998)

    Article  ADS  Google Scholar 

  115. Draxler, M., Chenakin, S.P., Markin, S.N., Bauer, P.: Apparent velocity threshold in the electronic stopping of slow hydrogen ions in LiF. Phys. Rev. Lett. 95(11), 113201 (2005)

    Article  ADS  Google Scholar 

  116. Markin, S.N., Primetzhofer, D., Bauer, P.: Vanishing electronic energy loss of very slow light ions in insulators with large band gaps. Phys. Rev. Lett. 103(11), 113201 (2009)

    Article  ADS  Google Scholar 

  117. Tsolakidis, A., Sánchez-Portal, D., Martin, R.M.: Calculation of the optical response of atomic clusters using time-dependent density functional theory and local orbitals. Phys. Rev. B 66(23), 235416 (2002)

    Article  ADS  Google Scholar 

  118. Artacho, E.: Electronic stopping in insulators: a simple model. J. Phys. Condens. Matter 19(27), 275211 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Peter Race .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Race, C.P. (2011). The Treatment of Electronic Excitations in Atomistic Simulations of Radiation Damage—A Brief Review. In: The Modelling of Radiation Damage in Metals Using Ehrenfest Dynamics. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15439-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15439-3_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15438-6

  • Online ISBN: 978-3-642-15439-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics