Skip to main content

Introducing the Target-Matrix Paradigm for Mesh Optimization via Node-Movement

  • Conference paper

Abstract

A general-purpose algorithm for mesh optimization via nodemovement, known as the Target-Matrix Paradigm, is introduced. The algorithm is general purpose in that it can be applied to a wide variety of mesh and element types, and to various commonly recurring mesh optimization problems such as shape improvement, and to more unusual problems like boundary-layer preservation with sliver removal, high-order mesh improvement, and edge-length equalization. The algorithm can be considered to be a direct optimization method in which weights are automatically constructed to enable definitions of application-specific mesh quality. The high-level concepts of the paradigm have been implemented in the Mesquite mesh-improvement library, along with a number of concrete algorithms that address mesh quality issues such as those shown in the examples of the present paper.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brewer, M., Diachin, L., Knupp, P., Melander, D.: The Mesquite Mesh Quality Improvement Toolkit. In: Proceedings of the 12th International Meshing Roundtable, Santa Fe NM, pp. 239–250 (2003)

    Google Scholar 

  2. Castillo, J.E.: A discrete variational grid generation method. SIAM J. Sci. Stat. Comp. 12(2), 454–468 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  3. Tinoco-Ruiz, J., Barrera-Sanchez, P.: Area functionals in Plane Grid Generation. In: Cross, M., et al. (eds.) Numerical Grid Generation in Computational Field Simulations, Greenwhich, UK, pp. 293–302 (1998)

    Google Scholar 

  4. Kennon, S., Dulikravich, G.: Generation of computational grids using optimization. AIAA Journal 24(7), 1069–1073 (1986)

    Article  MATH  Google Scholar 

  5. Freitag, L.: On combining Laplacian and optimization-based mesh smoothing techniques. In: ASME 1997 Trends in Unstructured Mesh Generation, AMD, vol. 220, pp. 37–43 (1997)

    Google Scholar 

  6. Zhou, T., Shimada, K.: An angle-based approach to two-dimensional mesh smoothing. In: Proceedings of the 9th International Meshing Roundtable, pp. 373–384 (2000)

    Google Scholar 

  7. Brackbill, J., Saltzman, J.: Adaptive zoning for singular problems in two dimensions. J. Comp. Phys. 46, 342–368 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  8. Steinberg, S., Roache, P.: Variational grid generation. Num. Meth. for P.D.E. 2, 71–96 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  9. Liseikin, V.: On a variational method of generating adaptive grids on n-dimensional surfaces. Soviet Math. Docl. 44(1), 149–152 (1992)

    MathSciNet  Google Scholar 

  10. Winslow, A.: Numerical solution of the quasilinear Poisson equations in a nonuniform triangle mesh. J. Comp. Phys. 2, 149–172 (1967)

    MathSciNet  Google Scholar 

  11. Knupp, P., Luczak, R.: Truncation error in grid generation. Num. Meth. P.D.E. 11, 561–571 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  12. Frey, P., George, P.: Mesh Generation: Application to Finite Elements. Wiley, Chichester (2008)

    MATH  Google Scholar 

  13. Dvinsky, A.: Adaptive grid generation from harmonic maps on Riemannian manifolds. J. Comp. Phys. 95, 450–476 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  14. Thompson, J., Warsi, Z., Mastin, C.: Automatic numerical generation of body-fitted curvilinear coordinate systems. J. Comp. Phys. 24, 274–302 (1977)

    Article  MATH  Google Scholar 

  15. Liseikin, V.: A computational differential geometry approach to grid generation. Springer, Heidelberg (2004)

    MATH  Google Scholar 

  16. Knupp, P.: Formulation of a Target-Matrix Paradigm for Mesh Optimization, SAND2006-2730J, Sandia National Laboratories (2006)

    Google Scholar 

  17. Knupp, P.: Local 2D Metrics for Mesh Optimization in the Target-matrix Paradigm, SAND2006-7382J, Sandia National Laboratories (2006)

    Google Scholar 

  18. Knupp, P., van der Zee, E.: Convexity of Mesh Optimization Metrics Using a Target-matrix Paradigm, SAND2006-4975J, Sandia National Laboratories (2006)

    Google Scholar 

  19. Knupp, P.: Analysis of 2D Rotational-invariant Non-barrier Metrics in the Target-Matrix Paradigm, SAND2008-8219P, Sandia National Laboratories (2008)

    Google Scholar 

  20. Knupp, P.: Measuring Quality Within Mesh Elements, SAND2009-3081J, Sandia National Laboratories (2009)

    Google Scholar 

  21. Knupp, P.: Label-invariant Mesh Quality Metrics. In: Proceedings of the 18th International Meshing Roundtable, pp. 139–155. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  22. Knupp, P.: Target-matrix Construction Algorithms, SAND2009-7003P, Sandia National Laboratories (2009)

    Google Scholar 

  23. Knupp, P., Kraftcheck, J.: Surface Mesh optimization in the Target-Matrix Paradigm (manuscript)

    Google Scholar 

  24. Knupp, P.: Tradeoff-coefficient and Binary Metric Construction Algorithms within the Target-Matrix Paradigm (manuscript)

    Google Scholar 

  25. Knupp, P.: Algebraic Mesh Quality Measures. SIAM J. Sci. Comput. 23(1), 193–218 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  26. Freitag, L., Knupp, P.: Tetrahedral mesh improvement via optimization of the element condition number. Intl. J. Numer. Meth. Engr. 53, 1377–1391 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  27. Knupp, P., Margolin, L., Shashkov, M.: Reference-Jacobian Optimization-based Rezone Strategies for Arbitrary Lagrangian Eulerian Methods. J. Comp. Phys. 176(1), 93–128 (2002)

    Article  MATH  Google Scholar 

  28. Knupp, P.: Updating Meshes on Deforming Domains. Communications in Numerical Methods in Engineering 24, 467–476 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  29. http://tetruss.larc.nasa.gov/vgrid/

  30. Luo, X., Shephard, M., Lee, L., Ge, L., Ng, C.: Moving Curved Mesh Adaptatio for Higher Order Finite Element Simulations. Engr. w/Cmptrs, February 27 (2010)

    Google Scholar 

  31. Knupp, P., Voshell, N., Kraftcheck, J.: Quadratic Triangle Mesh Untanglng and Optimization via the Target-matrix Paradigm. In: CSRI Summer Proceedings, SAND2010-3083P, Sandia National Laboratories (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Knupp, P. (2010). Introducing the Target-Matrix Paradigm for Mesh Optimization via Node-Movement. In: Shontz, S. (eds) Proceedings of the 19th International Meshing Roundtable. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15414-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15414-0_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15413-3

  • Online ISBN: 978-3-642-15414-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics