Skip to main content

Cardiovascular Cavitation

  • Chapter
  • First Online:
Cavitation in Non-Newtonian Fluids
  • 1942 Accesses

Abstract

Cavitation has been shown to play a key role in a wide array of novel therapeutic applications of ultrasound and lasers. Sometimes the mechanical effects associated with cavitation contribute to the intented surgical effect. More often, however, they are the source of unwanted collateral effects limiting the local confinement of ultrasound and laser surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alkan-Onyuksel, H., Demos, S.M., Lanza, G.M., Vonesh, M.J., Klegerman, M.E., Kane, B.J., Kuszak, J., McPherson, D.D. 1996 Development of inherently echogenic liposomes as an ultrasonic contrast agent. J. Pharm. Sci. 85, 486–490.

    Article  Google Scholar 

  • Allen, J.S., May, D.J., Ferrara, K.W. 2002 Dynamics of therapeutic ultrasound contrast agents. Ultrasound Med. Biol. 28, 805–816.

    Article  Google Scholar 

  • Alvarez, J., Deal, C.W. 1990 Leaflet escape from a Duromedics valve. J. Thorac. Cardiovasc. Surg. 99, 372.

    Google Scholar 

  • Andersen, T.S., Johansen, P., Paulsen, P.K., Nygaard, H., Hasenkam, J.M. 2003 Indication of cavitation in mechanical heart valve patients. J. Heart Valve Dis. 12, 790–796.

    Google Scholar 

  • Appelman, Y.E.A., Piek, J.J., Strikwerda, S., Tijssen, J.G.P., de Feyter, P.J., David, G.K., Serruys, P.W., Margolis, J.R., Koelemay, M.J., van Swijndregt, E.W.J.M., Koolen, J.J. 1996 Randomised trial of excimer laser angioplasty versus balloon angioplasty for treatment of obstructive coronary artery disease. Lancet 347, 79–84.

    Article  Google Scholar 

  • Avrahami, I., Rosenfeld, M., Einav, S., Eicher, M., Reul, H. 2000 Can vortices in the flow across mechanical heart valves contribute to cavitation? Med. Biol. Eng. Comput. 38, 93–97.

    Article  Google Scholar 

  • Bachmann, C., Kini, V., Deutsch, S., Fontaine, A.A., Tarbell, J.M. 2002 Mechanisms of cavitation and the formation of stable bubbles on the Bjork-Shiley Monostrut prosthetic heart valve. J. Heart Valve Dis. 11, 105–113.

    Google Scholar 

  • Basta, G., Venneri, L., Lazzerini, G., Pasanisi, E., Pianelli, M., Vesentini, N., Del Turco, S., Kusmic, C., Picano, E. 2003 In vitro modulation of intracellular oxidative stress of endothelial cells by diagnostic ultrasound. Cardiovasc. Res. 58, 156–161.

    Article  Google Scholar 

  • Basude, R., Wheatley, M.A. 2001 Generation of ultraharmonics in surfactant based ultrasound contrast agents: use and advantages. Ultrasonics 39, 437–444.

    Article  Google Scholar 

  • Baumbach, A., Bittl, J.A., Fleck, E., et al. 1994 Acute complications of excimer laser coronary angioplasty: a detailed analysis of multicenter results. J. Am. Coll. Cardiol. 23, 1305–1313.

    Article  Google Scholar 

  • Becher, H., Tiemann, K., Schlief, R., Luderitz, B., Nanda, N.C. 1997 Harmonic power Doppler contrast echocardiography; preliminary results. Echocardiography 14, 637.

    Article  Google Scholar 

  • Bekeredjian, R., Chen, S., Grayburn, P.A., Shohet, R.V. 2005a Augmentation of cardiac protein delivery using ultrasound targeted microbubble destruction. Ultrasound Med. Biol. 31, 687–691.

    Article  Google Scholar 

  • Bekeredjian, R., Grayburn, P.A., Shohet, R.V. 2005b Use of ultrasound contrast agents for gene or drug delivery in cardiovascular medicine. J. Am. Coll. Cardiol. 45, 329–335.

    Article  Google Scholar 

  • Bekeredjian, R., Katus, H.A., Kuecherer, H.F. 2006 Therapeutic use of ultrasound targeted microbubble destruction: a review of non-cardiac applications. Ultraschall Med. 27, 134–140.

    Article  Google Scholar 

  • Biancucci, B.A., Deutsch, S., Geselowitz, Tarbell, J.M. 1999 In vitro studies of gas bubble formation by mechanical heart valve. J. Heart Valve Dis. 8, 186–196.

    Google Scholar 

  • Bittl, J.A. 1996 Advances in coronary angioplasty. N. Engl. J. Med. 335, 1290–1302.

    Article  Google Scholar 

  • Bittl, J.A., Ryan, T.J. Jr, Keaney, J.F., Tcheng, J.E., Ellis, S.G., Isner, J.M., Sanborn, T.A. 1993 Coronary artery perforation during excimer laser coronary angioplasty. J. Am. Coll. Cardiol. 21, 1158–1165.

    Article  Google Scholar 

  • Bloch, S.H., Wan, M., Dayton, P.A., Ferrara, K.W. 2004 Optical observation of lipid- and polymer-shelled ultrasound microbubble contrast agents. Appl. Phys. Lett. 84, 631–633.

    Article  Google Scholar 

  • Blomley, M.J., Cooke, J.C., Unger, E.C., Monaghan, M.J., Crosgrove, D.O. 2001 Microbubble contrast agents: a new era in ultrasound. BMJ 322, 1222–1225.

    Article  Google Scholar 

  • Bluestein, D., Einav, S., Hwang, N.H. 1994 A squeeze flow phenomenon at the closing of a bileaflet mechanical heart valve prosthesis. J. Biomech. 27, 1369–1378.

    Article  Google Scholar 

  • Boukaz, A., de Jong, N., Cachard, C., Jouini, K. 1998 On the effect of lung filtering and cardiac pressure on the standard properties of ultrasound contrast agent. Ultrasonics 36, 703–708.

    Article  Google Scholar 

  • Boukaz, A., Versluis, M., de Jong, N. 2005 High-speed optical observations of contrast agent destruction. Ultrasound Med. Biol. 31, 391–399.

    Article  Google Scholar 

  • Boukaz, A. de Jong, N. 2007 WFUMB safety symposium on echo-contrast agents: nature and types of ultrasound contrast agents. Ultrasound Med. Biol. 33, 187–196.

    Article  Google Scholar 

  • Brinkmann, R., Theisen, D., Brendel, T., Birngruber, R. 1999 Single-pulse 30-J holmium laser for myocardial revascularization – A study on ablation dynamics in comparison to CO2 laser-TMR. IEEE J. Sel. Top. Quantum Elect. 5, 1–12.

    Article  Google Scholar 

  • Brujan, E.A. 2004 The role of cavitation microjets in the therapeutic applications of ultrasound. Ultrasound Med. Biol. 30, 381–387.

    Article  Google Scholar 

  • Brujan, E.A., Ikeda, T., Matsumoto, Y. 2005 Jet formation and shock wave emission during collapse of ultrasound-induced cavitation bubbles and their role in the therapeutic applications of high-intensity focused ultrasound. Phys. Med. Biol. 50, 4797–4809.

    Article  Google Scholar 

  • Brujan, E.A., Ikeda, T., Matsumoto, Y. 2008 On the pressure of cavitation bubbles. Exp. Therm. Fluid Sci. 32, 1188–1191.

    Article  Google Scholar 

  • Bull, J.L. 2005 Cardiovascular bubble dynamics. Crit. Rev. Biomed. Eng. 33, 299–346.

    Article  Google Scholar 

  • Bull, J.L. 2007 The application of microbubbles for target drug delivery. Expert Opin. Drug. Deliv. 4, 475–493.

    Article  Google Scholar 

  • Burns, P.N., Wilson, S.R., Simpson, D.H. 2000 Pulse inversion imaging of liver blood flow: improved method for characterizing focal masses with microbubble contrast. Invest. Radiol. 35, 58–71.

    Article  Google Scholar 

  • Calderon, A.J., Heo, Y.S., Huh, D., Futai, N., Takayama, S., Fowlkes, J.B., Bull, J.L. 2006 Microfluidic model of bubble lodging in microvessel bifurcations. Appl. Phys. Lett. 89, 244103.

    Article  Google Scholar 

  • Cavanagh, D.P., Eckmann, D.M., 2002 The effects of a soluble surfactant on the interfacial dynamics of stationary bubbles in inclined tubes. J. Fluid Mech. 469, 369–400.

    Article  MATH  Google Scholar 

  • Chahine, G.L. 1996 Scaling of mechanical heart valves for cavitation inception: observation and acoustic detection. J. Heart Valve Dis. 5, 207–214.

    Google Scholar 

  • Chandran, K.B., Aluri, S. 1997 Mechanical valve closing dynamics: relationship between velocity of closing, pressure transients, and cavitation initiation. Ann. Biomed. Eng. 25, 926–938.

    Google Scholar 

  • Chappell, J.C., Price, R.J. 2006 Targeted therapeutic applications of acoustically active microspheres in the microcirculation. Microcirculation 13, 57–70.

    Article  Google Scholar 

  • Chatterjee, D., Sarkar, K. 2003 A Newtonian rheological model for the interface of microbubble contrast agents. Ultrasound Med. Biol. 29 1749–1757.

    Article  Google Scholar 

  • Chomas, J.E., Dayton, P.A., May, D., Allen, J., Klibanov, A., Ferrara, K. 2000 Optical observation of contrast agent destruction. Appl. Phys. Lett. 77, 1056–1058.

    Article  Google Scholar 

  • Chomas, J.E., Dayton, P.A., May, D., Allen, J., Klibanov, A., Ferrara, K. 2001 Threshold of fragmentation for ultrasonic contrast agents. J. Biomed. Opt. 6, 141–150.

    Article  Google Scholar 

  • Christiansen, J.P., French, B.A., Klibanov, A.L., Kaul, S., Lindner, J.R. 2003 Targeted tissue transfection with ultrasound destruction of plasmid-bearing cationic microbubbles. Ultrasound Med. Biol. 29, 1759–1767.

    Article  Google Scholar 

  • Church, C.C. 1995 The effects of an elastic solid surface layer on the radial pulsations of gas bubbles. J. Acoust. Soc. Am. 97, 1510–1521.

    Article  Google Scholar 

  • Cooley, D.A., Frasier, O.H., Kadipasaoglu, K.A., Lindenmeir, M.H., Pehlivanoglu, S., Kolff, J.W., Wilansky, S., Moore, W.H. 1996 Transmyocardial laser revascularisation: clinical experience with twelve-month follow-up. J. Thorac. Cardiovasc. Surg. 111, 791–799.

    Article  Google Scholar 

  • Dalecki, D. 2007 WFUMB safety symposium on echo-contrast agents: bioeffects of ultrasound contrast agents in vivo. Ultrasound Med. Biol. 33, 205–213.

    Article  Google Scholar 

  • Dayton, P.A., Allen, J.S., Ferrara, K.W. 2002 The magnitude of radiation force on ultrasound contrast agents. J. Acoust. Soc. Am. 112, 2183–2192.

    Article  Google Scholar 

  • DeBisschop, K.M., Miksis, M.J., Eckmann, D.M. 2002 Bubble rising in an inclined channel. Phys. Fluids 14, 93–106.

    Article  Google Scholar 

  • de Jong, N. 1993 Acoustic properties of ultrasound contrast agents. PhD thesis, Erasmus University, Rotterdam, The Netherlands.

    Google Scholar 

  • de Jong, N., Hoff, L. 1993 Ultrasound scattering of Albunex microspheres. Ultrasonics 31, 175–181.

    Article  Google Scholar 

  • de Jong, N., Frinking, P.J.A., Boukaz, A., Goorden, M., Schourmans, T., Jingping, X., Mastik, F. 2000 Optical imaging of contrast agent microbubbles in an ultrasound field with a 100-MHz camera. Ultrasound Med. Biol. 26, 487–492.

    Article  Google Scholar 

  • Deklunder, G., Roussel, M., Lecroart, J.L., Prat, A., Gautier, C. 1998 Microemboli in cerebral circulation and alteration of cognitive abilities in patients with mechanical prosthetic heart valves. Stroke 29, 1821–1826.

    Article  Google Scholar 

  • Demer, L.L., Ariani, M., Siegel, R.J., 1991 High intensity ultrasound increases distensibility of calcific atherosclerotic arteries. J. Am. Coll. Cardiol. 18, 1259–1262.

    Article  Google Scholar 

  • Deng, C.X., Sieling, F., Pan, H., Cui, J. 2004 Ultrasound-induced cell membrane porosity. Ultrasound Med. Biol. 30, 519–526.

    Article  Google Scholar 

  • Deuvaert, F.E., Devriendt, J., Massaut, J., Van Nooten, G., De Paepe, J., Primo, G. 1989 Leaflet escape of a mitral Duromedics prosthesis. Case report. Acta Chir. Belg. 89, 15–18.

    Google Scholar 

  • Dexter, E.U., Aluri, S. Radcliffe, R.R., Zhu, H., Carlson, D.D., Heilman, T.E., Chandran, K.B., Richenbacher, W.E. 1999 In vivo demonstration of cavitation potential of a mechanical heart valve. ASAIO J. 45, 436–441.

    Article  Google Scholar 

  • Dijkmans, P.A., Juffermans, L.J.M., Musters, R.J.P., van Wamel, A., ten Cate, F.J., van Gilst, W., de Jong, N., Kamp, O. 2004 Microbubbles and ultrasound: from diagnosis to therapy. Eur. J. Echocardiography 5, 245–256.

    Article  Google Scholar 

  • Doinikov, A.A., Dayton, P.A. 2007 Maxwell rheological model for lipid-shelled ultrasound microbubble contrast agents. J. Acoust. Soc. Am. 121, 3331–3340.

    Article  Google Scholar 

  • Duco Jansen, E., Asshauer, T., Frenz, M., Motamedi, M., Delacretaz, G., Welch, A.J. 1996 Effect of pulse duration on bubble formation and laser-induced pressures waves during holmium laser ablation. Lasers Surg. Med. 18, 278–293.

    Article  Google Scholar 

  • Dutka, A.J. 1985 A review of the pathophysiology and potential application of experimental therapies for cerebral ischemia to the treatment of cerebral arterial gas embolism. Undersea Biomed. Res. 12, 403–421.

    Google Scholar 

  • Eckmann, D.M., Cavanagh, D.P. 2003 Bubble detachment by diffusion-controlled surfactant adsorption. Colloids Surf. A Physicochem. Eng. Aspects 227, 21–33.

    Article  Google Scholar 

  • Eckmann, D.M., Lomivorotov, V.N. 2003 Microvascular gas embolization clearence following perfluorocarbon administration. J. Appl. Physiol. 94, 860–868.

    Google Scholar 

  • Erikson, J.M., Freeman, G.L., Chandrasekar, B. 2003 Ultrasound-targeted antisense oligonucleotide attenuates ischemia/reperfusion-induced myocardial tumor necrosis factor-alpha. J. Mol. Cell Cardiol. 35, 119–130.

    Article  Google Scholar 

  • Everbach, E.C., Francis, C.W. 2000 Cavitational mechanisms in ultrasound-accelerated thrombolysis at 1 MHz. Ultrasound Med. Biol. 26, 1153–1160.

    Article  Google Scholar 

  • Feinstein, S.B., Shah, P.M., Bing, R.J., Meebaum, S., Corday, E., Chang, B.L., Sanillan, G., Fujibayashi, Y. 1984 Microbubble dynamics visualized in the intact capillary circulation. J. Am. Coll. Cardiol. 4, 595–600.

    Article  Google Scholar 

  • Ferrara, K.W., Merritt, C.R.B., Burns, P.N., Foster, F.S., Mattrey, R.F., Wickline, S.A. 2000 Evaluation of tumor angiogenesis with US: imaging, Doppler, and contrast agents. Acad. Radiol. 7, 824–839.

    Article  Google Scholar 

  • Ferrara, K., Pollard, R., Borden, M. 2007 Ultrasound microbubble contrast agents: fundamentals and application to gene and drug delivery. Annu. Rev. Biomed. Eng. 9, 415–447.

    Article  Google Scholar 

  • Firschke, C., Lindner, J.R., Wei, K., Goodman, N.C., Skyba, D.M., Kaul, S. 1997 Myocardial perfusion imaging in the setting of coronary artery stenosis and acute myocardial infarction using venous injection of a second-generation echocardiographic contrast agent. Circulation 96, 959–967.

    Google Scholar 

  • Francis, C.W., Onundarson, P.T., Carstensen, E.L., Blinc, A., Meltzer, R.S., Schwarz, K., Marder, V.J. 1992 Enhancement of fibrinolysis in vitro by ultrasound. J. Clin. Invest. 90, 2063–2068.

    Article  Google Scholar 

  • Frenkel, P.A., Chen, S., Thai, T., Shohet, R.V., Grayburn, P.A. 2002 DNA-loaded albumin microbubbles enhance ultrasound-mediated transfection in vitro. Ultrasound Med. Biol. 28, 817–822.

    Article  Google Scholar 

  • Garrison, L.A., Lamson, T.C., Deutsch, S., Geselowitz, D.B., Gaumond, R.P., Tarbell, J.M. 1994 An in vitro investigation of prosthetic heart valve cavitation in blood. J. Heart Valve Dis. 3, S8–S24.

    Google Scholar 

  • Georgiadis, D., Preiss, M., Lindner, A., Gybels, Y., Zierz, S., Zerkowski, H.R. 1997 Doppler microembolic signals in children with prosthetic cardiac valves. Stroke 28, 1328–1329.

    Article  Google Scholar 

  • Gerriets, T., Grossherr, M., Misfeld, M., Nees, U., Reusche, E., Stolz, E., Sievers, H.H., Kaps, M., Kraatz, E.G. 2004 Strategies for the reduction of cerebral microembolism during transmyocardial laser revascularisation. Laser Surg. Med. 34, 379–384.

    Article  Google Scholar 

  • Giesecke, T., Hynynen, K. 2003 Ultrasound-mediated cavitation thresholds of liquid perfluorocarbon droplets in vitro. Ultrasound Med. Biol. 29, 1359–1365.

    Article  Google Scholar 

  • Girod, G., Jaussi, A., Rosset, C., De Werra, P., Hirt, F., Kappenberger, L. 2002 Cavitation versus degassing: in vitro study of the microbubble phenomenon observed during echocardiography in patients with mechanical prosthetic cardiac valves. Echocardiography 19, 531–536.

    Article  Google Scholar 

  • Graf, T., Fischer, H., Reul, H., Rau, G. 1991 Cavitation potential of mechanical heart valve prostheses . Int. J. Artif. Organs. 14, 169–174.

    Google Scholar 

  • Gramiak, R., Shah, P.M. 1968 Echocardiography of the aortic root. Invest. Radiol. 3, 356–366.

    Article  Google Scholar 

  • Haase, K.K., Rose, C., Duda, S., Baumbach, A., Oberhoff, M., Anthanasiadis, A., Karsch, K.R. 1997 Perspectives of coronary excimer laer angioplasty: multiplexing, saline flushing, and acoustic ablation control. Lasers Surg. Med. 21, 72–79.

    Article  Google Scholar 

  • Halliday, P., Anderson, D.N., Davidson, A.I., Page, J.G. 1994 Management of cerebral air embolism secondary to a disconnected central venous catheter. Br. J. Surg. 81, 71.

    Article  Google Scholar 

  • Hamm, C.W., Reimers, J., Köster, R., Terres, W., Stiel, G.M., Koschyk, D.H., Kuck, K.H., Siegel, R.J. 1994 Coronary ultrasound thrombolysis in a patient with acute myocardial infarction. Lancet 343, 605–606.

    Article  Google Scholar 

  • Hansen, A., Bekeredjian, R., Filusch, A., Wolf, D., Gross, M.L., Mueller, S., Korosoglou, G., Kuecherer, H.F. 2005 Cardioprotective effects of the novel selective endothelin-A receptor antagonist BSF 461314 in ischemia-reperfusion injury. J. Am. Soc. Echocardiogr. 18, 1213–1220.

    Article  Google Scholar 

  • Hashiya, N., Aoki, M., Tachibana, K., Taniyama, Y., Yamasaki, K., Hiraoka, K., Makino, K., Yasufumi, K., Ogihara, T., Morishita, R. 2004 Local delivery of E2F decoy oligodeoxynucleotides using ultrasound with microbubble agent (Optison) inhibits intimal hyperplasia after balloon injury in rat carotid artery model. Biochem. Biophys. Res. Commun. 317, 508–514.

    Article  Google Scholar 

  • Haude, M., Welge, D., Koch, L., Roth, T., Ge, J., Baumgart, D., Erbel, R. 1997 Laser angioplasty and laser recanalization. Herz 22, 299–307.

    Article  Google Scholar 

  • Helps, S.C., Parsons, D.W., Reilly, P.L., Gorman, D.F. 1990 The effect of gas emboli on rabbit cerebral blood-flow. Stroke 21, 94–99.

    Article  Google Scholar 

  • Herren, J.I., Kunzelman, K.S., Vocelka, C., Cochran, R.P., Spiess, B.D. 1998 Angiographic and histological evaluation of porcine retinal vascular damage and protection with perfluorocarbons after massive air embolism. Stroke 29, 2396–2403.

    Article  Google Scholar 

  • Horvath, K.A., Smith, W.J., Laurence, R.G., Schoen, F.J., Appleyard, R.F., Cohn, L.H., 1995 Recovery and viability of an acute myocardial infarct after transmyocardial laser revascularisation. J. Am. Coll. Cardiol. 25, 258–263.

    Article  Google Scholar 

  • Horvath, K.A., Manning, F., Cummings, N., Shernan, S.K., Cohn, L.H. 1996 Transmyocardial laser revascularisation: operative techniques and clinical results at two years. J. Thorac. Cardiovasc. Surg. 111, 1047–1053.

    Article  Google Scholar 

  • Huang, S. L., Hamilton, A. J., Pozharski, E., Nagaraj, A., Klegerman, M. E., McPherson, D. D., MacDonald, R. C. 2002 Physical correlates of the ultrasonic reflectivity of lipid dispersions suitable as diagnostic contrast agents. Ultrasound Med. Biol. 28, 339–348.

    Article  Google Scholar 

  • Hundley, W.G., Kizilbash, A.M., Afridi, I., Franco, F., Peshock, R.M., Grayburn, P.A. 1998 Administration of an intravenous perfluorocarbon contrast agent improves echocardiographic determination of left ventricular volumes and ejection fraction: comparison with cine magnetic resonance imaginh. J. Am. Coll. Cardiol. 32, 1426–1432.

    Article  Google Scholar 

  • Hwang, N.H. 1998 Cavitation potential of pyrolytic carbon heart valve prostheses: a review and current status. J. Heart Valve Dis. 7, 140–150.

    Google Scholar 

  • Hynynen, K., McDannold, N., Vykhodtseva, N., Jolesz, F. 2001 Noninvasive MR imaging-guided focal opening of the blood-brain barrier in rabbits. Radiology 220, 640–646.

    Article  Google Scholar 

  • Johansen, P. 2004 Mechanical heart valve cavitation. Exp. Rev. Med. Dev. 1, 95–104.

    Article  Google Scholar 

  • Kafesjian, R., Howannec, M., Ward, G.D., Diep, L., Wagstaff, L.S., Rhee, R. 1994 Cavitation damage of pyrolytic carbon in mechanical heart valves. J. Heart Valve Dis. 3, S2–S7.

    Google Scholar 

  • Kaul, S. 2001 Myocardial contrast echocardiography: basic principles. Prog. Cardiovasc. Dis. 44, 1–11.

    Article  Google Scholar 

  • Keller, M.W., Feinstein, S.B., Watson, D.D. 1987 Successful left ventricular opacification following peripheral venous injection of sonicated contrast agent: an experimental evaluation. Am. Heart J. 114, 570–575.

    Article  Google Scholar 

  • Khismatullin, D.B., Nadim, A. 2002 Radial oscillations of encapsulated microbubbles in viscoelastic liquids. Phys. Fluids 14, 3534–3557.

    Article  Google Scholar 

  • Kingsbury, C., Kafesjian, R., Guo, G., Adlparvar, P., Unger, J., Quijano, R.C., Graf, T., Fisher, H., Reul, H., Rau, G. 1993 Cavitation threshold with respect to dP/dt: evaluation in 29 mm bileaflet, pyrolitic carbon heart valves. Int. J. Artif. Organs 16, 515–520.

    Google Scholar 

  • Klein, M., Schulte, H. D., Gams, E. 1998 TMLR Management of Coronary Artery Diseases. Springer, Berlin.

    Book  Google Scholar 

  • Klepetko, W., Moritz, A., Mlczoch, J., Schurawitzki, H., Domanig, E., Wolner, E. 1989 Leaflet fracture in Edwars-Duromedics bileaflet valves. J. Thorac. Cardiovasc. Surg. 97, 90–94.

    Google Scholar 

  • Klibanov, A.L. 2006 Microbubble contrast agents: targeted ulrasound imaging and ultrasound-assisted drug-delivery applications. Invest. Radiol. 41, 354–362.

    Article  Google Scholar 

  • Kondo, T., Misik, V., Riesz, P. 1998 Effect of gas-containing microspheres and echo contrast agents on free radical formation by ultrasound. Free Radic. Biol. Med. 25, 605–612.

    Article  Google Scholar 

  • Kondo, I., Ohmori, K., Oshita, A., Takeuchi, H., Fuke, S., Shinomiya, K., Noma, T., Namba, T., Kohno, M. 2004 Treatment of acute myocardial infarction by hepatocyte growth factor gene transfer: the first demonstration of myocardial transfer of a “functional” gene using ultrasonic microbubble destruction. J. Am. Coll. Cardiol 44, 644–653.

    Article  Google Scholar 

  • Kort, A., Kronzon, I. 1982 Microbubble formation – in vitro and in vivo observation. J. Clin. Ultrasound 10, 117–120.

    Article  Google Scholar 

  • Kripfgans, O.D., Fowlkes, J.B., Miller, D.L., Eldevik, O.P., Carson, P.L. 2000 Acoustic droplet vaporization for therapeutic and diagnostic applications. Ultrasound Med. Biol. 26, 1177–1189.

    Article  Google Scholar 

  • Kripfgans, O.D., Fabiilli, M.L., Carson, P.L., Fowlkes, J.B. 2004 On the acoustic vaporization of micrometer-sized droplets. J. Acoust. Soc. Am. 116, 272–281.

    Article  Google Scholar 

  • Lange, R.A., Hillis, L.D. 1999 Transmyocardial laser revascularisation. N. Engl. J. Med. 341, 1075–1076.

    Article  Google Scholar 

  • Lanza, G. M., Wallace, K. D., Scott, M. J., Cacheris, W. P., Abendschein, D. R., Christy, D. H., Sharkey, A. M., Miller, J. G., Gaffney, P. J., Wickline, S. A. 1996 A novel site-targeted ultrasonic contrast agent with broad biomedical application. Circulation 94, 3334–3340.

    Article  Google Scholar 

  • Lauer, C.G., Burge, R., Tang, D.B., Bass, B.G., Gomez, E.R., Alving, B.M. 1992 Effect of ultrasound on tissue-type plasminogen activator-induced thrombolysis. Circulation 86, 1257–1264.

    Article  Google Scholar 

  • Lauterborn, W. 1976 Numerical investigations of nonlinear oscillations of gas bubbles in liquids. J. Acoust. Soc. Am. 59, 283–293.

    Article  Google Scholar 

  • Lawrie, A., Brisken, A.F., Francis, S.E., Cumberland, D.C., Crossman, D.C., Newman, C.M. 2000 Microbubble-enhanced ultrasound for vascular gene delivery. Gene Ther. 7, 2023–2027.

    Article  Google Scholar 

  • Lee, G., Mason, D.T. 1992 Excimer coronary laser angioplasty – its time for a critical evaluation. Am. J. Cardiol. 69, 1640–1643.

    Article  Google Scholar 

  • Lee, H., Taenaka, Y. 2006 Mechanism for cavitation phenomenon in mechanical heart valves. J. Mech. Sci. Technol. 20, 1118–1124.

    Article  Google Scholar 

  • Leong-Poi, H., Le, E., Rim, S.J., Sakuma, T., Kaul, S., Wei, K. 2001 Quantification of myocardial perfusion and determination of coronary stenosis severity during hyperemia using real-time myocardial contrast echocardiography. J. Am. Soc. Echocardiogr. 14, 1173–1182.

    Article  Google Scholar 

  • Levy, D.J., Child, J.S., Rambod, E., Gharib, M., Milo, S., Reisner, S.A. 1999 Microbubbles and mitral valve prostheses – trasesophageal echocardiographic evaluation. Eur. J. Ultrasound 10, 31–40.

    Article  Google Scholar 

  • Lin, H.J., Bianccucci, B.A., Deutsch, S., Fontaine, A.A., Tarbell, J.M. 2000 Observation and quantification of gas bubble formation on a mechanical heart valve. J. Biomech. Eng. 122, 304–309.

    Article  Google Scholar 

  • Lindner, J.R. 2004 Microbubbles in medical imaging: current applications and future directions. Nat. Rev. Drug Discov. 3, 527–532.

    Article  Google Scholar 

  • Liu, Y., Miyoshi, H., Nakamura, M. 2006 Encapsulated ultrasound microbubbles: therapeutic application in drug/gene delivery. J. Control. Rel. 114, 89–99.

    Article  Google Scholar 

  • Litvack, F., Eigler, N.L., Forrester, J.S. 1993 In search of the optimized excimer laser angioplasty system. Circulation 87, 1421–1422.

    Article  Google Scholar 

  • Lu, Q.L., Liang, H.D., Partridge, T., Blomley, M.J. 2003 Microbubble ultrasound improves the efficiency of gene transduction in skeletal muscle in vivo with reduced tissue damage. Gene Ther. 10, 396–405.

    Article  Google Scholar 

  • Manning, K.B., Kini, V., Fontaine, A.A., Deutsch, S., Tarbell, J.M. 2003 Regurgitant flow field characteristics of the St Jude bileaflet mechanical heart valve under physiological pulsatile flow using particle image velocimetry. Artif. Organs 27, 840–846.

    Article  Google Scholar 

  • Marmottant, P., van der Meer, S., Emmer, M., Versluis, M., de Jong, N., Hilgenfeldt, S., Lohse, D. 2005 A model for large amplitude oscillations of coated bubbles accounting for buckling and rupture. J. Acoust. Soc. Am. 118, 3499–3505.

    Article  Google Scholar 

  • Mayer, S., Grayburn, P.A. 2001 Myocardial contrast agents: recent advances and future directions. Prog. Cardiovasc. Dis. 44, 33–44.

    Article  Google Scholar 

  • Meza, M., Greener, Y., Hunt, R., Perry, B., Revall, S., Barbee, W., Murgo, J, P., Cheirif, J. 1996 Myocardial contrast echocardiography: reliable, safe, and efficacious myocardial perfusion assessment after intravenous injections of a new echocardiographic contrast agent. Am. Heart J. 132, 871–881.

    Article  Google Scholar 

  • Miller, D.L., Pislaru, S.V., Greenleaf, J.E. 2002 Sonoporation: mechanical DNA delivery by ultrasonic cavitation. Somat. Cell Mol. Genet. 27, 115–134.

    Article  Google Scholar 

  • Milo, S., Rambod, E., Gutfinger, C., Gharib, M. 2003 Mitral mechanical heart valves: in vitro studies of their closure, vortex and microbubble formation with possible medical implications. Eur. J. Cardiothorac. Surg. 24, 364–370.

    Article  Google Scholar 

  • Mintz, G.S., Kovach, J.A., Javier, S.P., Pichard, A.D., Kent, K.M., Popma, J.J., Salter, L.F., Leon, M.B. 1995 Mechanisms of lumen enlargement after excimer laser coronary angioplasty: an intravascular ultrasound study. Circulation 92, 3408–3414.

    Article  Google Scholar 

  • Morgan, K.E. 2001 Experimental and theoretical evaluation of ultrasonic contrast agent behavior. PhD thesis, University of Virginia, Ann Arbor, USA.

    Google Scholar 

  • Mukherjee, D., Wong, J., Griffin, B., Ellis, S.G., Porter, T., Sen, S., Thomas, J.D. 2000 Ten-fold augmentation of endothelial uptake of vascular endothelial growth factor with ultrasound after systemic administration. J. Am. Coll. Cardiol. 35, 1678–1686.

    Article  Google Scholar 

  • Murphy, B.P., Harford, F.J., Cramer, F.S. 1985 Cerebral air-embolism resulting from invasive medical procedures – treatment with hyperbaric oxigen. Ann. Surg. 201, 242–245.

    Article  Google Scholar 

  • Muth, C.M., Shank, E.S. 2000 Primary care: gas embolism. N. Engl. J. Med. 342, 476–482.

    Article  Google Scholar 

  • Nanda, N.C., Schlief, R., Goldberg, B.B. 1997 Advances in echo imaging using contrast enhancement. Kluwer, Dordrecht.

    Book  Google Scholar 

  • Nötzold, A., Khattab, A.A., Eggers, J. 2006 Microemboli in aortic valve replacement. Expert Rev. Cardiovasc. Ther. 4, 853–859.

    Article  Google Scholar 

  • Oberhoff, M., Hassenstein, S., Hanke, H., Xie, D.Y., Blessing, E., Baumbach, A., Hanke, S., Haase, K.K., Betz, E., Karsch, K.R. 1992 Smooth excimer laser coronary angioplasty (SELCA) – Initial experimental results. Circulation 86, 800.

    Google Scholar 

  • Ohl, C.D., Arora, M., Ikink, R., de Jong, N., Versluis, M., Delius, M., Lohse, D. 2006 Sonoporation from jetting cavitation bubbles. Biophys. J. 91, 4285–4295.

    Article  Google Scholar 

  • Paulsen, P.K., Jensen, B.K., Hasenkam, J.M., Nygaard, H. 1999 High-frequency pressure fluctuations measured in heart valve patients. J. Heart Valve Dis. 8, 482–486.

    Google Scholar 

  • Pecha, R., Gompf, B. 2000 Microimplosions: cavitation collapse and shock wave emission on a nanosecond time scale. Phys. Rev. Lett. 84, 1328–1330.

    Article  Google Scholar 

  • Pislaru, S.V., Pislaru, C., Kinnick, R.R., Singh, R., Gulati, R., Greenleaf, J.F., Simari, R.D. 2003 Optimization of ultrasound-mediated gene transfer: comparison of contrast agents and ultrasound modalities. Eur. Heart J. 24, 1690–1698.

    Article  Google Scholar 

  • Polak, J.F. 2004 Ultrasound energy and the dissolution of thrombus. N. Engl. J. Med. 351, 2154–2155.

    Article  Google Scholar 

  • Porter, J.M., Pidgeon, C., Cunningham, A.J. 1999 The sitting position in neurosurgery: a critical appraisal. Br. J. Anaesthesia 82, 117–128.

    Article  Google Scholar 

  • Porter, T.R., LeVeen, R.F., Fox, R., Kricsfeld, A., Xie, F. 1996 Thrombolytic enhancement with perfluorocarbon-exposed sonicated dextrose albumin microbubbles. Am. Heart J. 132, 964–968.

    Article  Google Scholar 

  • Postema, M., van Wamel, A., Lancee, C.T., de Jong, N. 2004 Ultrasound-induced encapsulated microbubble phenomena. Ultrasound Med. Biol. 30, 827–840.

    Article  Google Scholar 

  • Potthast, K., Erdonmez, G., Schnelke, C., Sellin, L., Sliwka, U., Schondube, F., Eichler, M., Reul, H. 2000 Origin and appearance of HITS induced by prosthetic heart valves: an in vitro study. Int. J. Artif. Organs 23, 441–445.

    Google Scholar 

  • Prentice, P., Cuschieri, A., Dholakia, K., Prausnitz, M., Campbell, P. 2005 Membrane disruption by optically controlled microbubble cavitation. Nature Phys. 1, 107–110.

    Article  Google Scholar 

  • Price, R.J., Skyba, D.M., Kaul, S., Skalak, T.C. 1998 Delivery of colloidal particles and red blood cells to tissue through microvessel ruptures created by targeted microbubble destruction with ultrasound. Circulation 98, 1264–1267.

    Article  Google Scholar 

  • Rainbird, A.J., Mulvagh, S.L., Oh, J.K., McCully, R.B., Klarich, K.W., Shub, C., Mahoney, D.W., Pellikka, P.A. 2001 Contrast dobutamine stress echocardiography: clinical practice assessment in 300 consecutive patients. J. Am. Soc. Echocardiogr. 14, 378–385.

    Article  Google Scholar 

  • Raisinghani, A., DeMaria, A.N. 2002 Physical principles of microbubble ultrasound contrast agents. Am. J. Cardiol. 90, 3 J–7 J.

    Article  Google Scholar 

  • Rambod, E., Beizaie, M., Shusser, M., Milo, S., Gharib, M. 1999 A physical model describing the mechanism for formation of gas microbubbles in patients with mitral mechanical heart valves. Ann. Biomed. Eng. 27, 774–792.

    Article  Google Scholar 

  • Rambod, E., Beizaie, M., Sahn, D.J., Gharib, M. 2007 Role of vortices in growth of microbubbles at mitral mechanical heart valve closure. Ann. Biomed. Eng. 35, 1131–1145.

    Article  Google Scholar 

  • Rapaport, S.I., Rao, L.V. 1995 The tissue factor pathway: how it has become a “prima ballerina”. Thromb. Hemost. 74, 7–17.

    Google Scholar 

  • Rees, M.R., Michalis, L.K. 1995 Activated-guidewire technique for treating chronic coronary artery occlusion. Lancet 346, 943–944.

    Article  Google Scholar 

  • Rosenschein, U., Rozenzsajn, L.A., Kraus, L., Marboe, C.C., Watkins, J.F., Rose, E.A., David, D., Cannon, P.J., Weinstein, J.S., 1991 Ultrasonic angioplasty in totally occluded peripheral arteries. Initial clinical, histological, and angiographic results. Circulation 83, 1976–1986.

    Article  Google Scholar 

  • Rosenschein, U., Gaul, G., Erbel, R., Amann, F., Velasquez, D., Stoerger, H., Simon, R., Gomez, G., Troster, J., Bartorelli, A., Pieper, M., Kyriakides, Z., Laniado, S., Miller, H.I., Cribier, A., Fajadet J. 1999 Percutaneous transluminal therapy of occluded saphenous vein grafts: can the challenge be met with ultrasound thrombolysis? Circulation 99, 26.

    Article  Google Scholar 

  • Ryu, K.H., Hindman, B.J., Reasoner, D.K., Dexter, F. 1996 Heparin reduces neurological impairment after cerebral arterial air embolism in the rabbit. Stroke 27, 303–309.

    Article  Google Scholar 

  • Safian, R.D., Niazi, K.A., Strzelecki, M., Lichtenberg, A., May, M.A., Juran, N., Freed, M., Ramos, R., Gangadharan, V., Grines, G.L., O’Neill, W.W. 1993 Detailed angiographic analysis of high-speed mechanical rotational atherectomy in human coronary arteries. Circulation 88, 961–968.

    Article  Google Scholar 

  • Sambola, A., Osende, J., Hathcock, J., Degen, M., Nemerson, Y., Fuster, V., Crandall, J., Badimon, J.J. 2003 Role of risk factors in the modulation of tissue factor activity and blood thrombogenicity. Circulation 107, 973–977.

    Article  Google Scholar 

  • Sarkar, K., Shi, W.T., Chatterjee, D., Forsberg, F. 2005 Characterization of ultrasound contrast microbubbles using in vitro experiments and viscous and viscoelastic interface models for encapsulation. J. Acoust. Soc. Am. 118, 539–550.

    Article  Google Scholar 

  • Sheikov, N., McDannold, N., Vykhodtseva, N., Jolesz, F., Hynynen, K. 2004 Cellular mechanisms of the blood-brain barrier opening induced by ultrasound in presence of microbubbles. Ultrasound Med. Biol. 30, 979–989.

    Article  Google Scholar 

  • Shengping, Q., Caskey, C.F., Ferrara, K.W. 2009 Ultrasound contrast microbubbles in imaging and therapy: physical principles and engineering. Phys. Med. Biol. 54, R27–R57.

    Article  Google Scholar 

  • Shi, W.T., Forsberg, F., Hall, A.L., Chia, R.Y., Liu, J.B., Miller, S., Thomenius, K.E., Wheatley, M.A., Goldberg, B.B. 1999 Subharmonic imaging with microbubble contrast agents: initial results. Ultrason. Imaging 21, 79–94.

    Google Scholar 

  • Shohet, R.V., Chen, S., Zhou, Y.T., Wang, Z., Meidell, R.S., Unger, R.H., Grayburn, P.A. 2000 Echocardiographic destruction of albumin micro-bubbles directs gene delivery to the myocardium. Circulation 101, 2554–2556.

    Article  Google Scholar 

  • Song, J., Chappell, J.C., Qi, M., van Gieson, E.J., Kaul, S., Price, R.J. 2002 Influence of injection site, microvascular pressure and ultrasound variables on microbubble-mediated delivery of microspheres to muscle. J. Am. Coll. Cardiol. 39, 726–731.

    Article  Google Scholar 

  • Stride, E., Saffari, N. 2004 Theoretical and experimental investigation of the behaviour of ultrasound contrast agent particles in whole blood. Ultrasound Med. Biol. 30, 1495–1509.

    Article  Google Scholar 

  • Strobel, D., Kleinecke, C., Hansler, J., Frieser, M., Handl, T., Hahn, E.G., Bernatik, T. 2005 Contrast-enhanced sonography for the characterization of hepatocellular carcinomas-correlation with histological differentiation. Ultraschall Med. 26, 270–276.

    Article  Google Scholar 

  • Suslick, K.S. 1988 Ultrasound: ist Chemical, Physical and Biological Effects. VCH, New York.

    Google Scholar 

  • Tachibana, K., Tachibana, S. 1995 Albumin microbubble echo contrast material as an enhancer for ultrasound accelerated thrombolysis. Circulation 92, 1148–1150.

    Article  Google Scholar 

  • Tachibana, K., Uchida, T., Ogawa, K., Yamashita, N., Tamura, K. 2002 Induction of cell-membrane porosity by ultrasound. Lancet 353, 1409.

    Article  Google Scholar 

  • Takiura, K., Chinzei, T., Abe, Y., Isoyama, T., Saito, I., Ozeki, T., Imachi, K. 2003 A new approach to detection of the cavitation on mechanical heart valves. ASAIO J. 49, 304–308.

    Article  Google Scholar 

  • Taniyama, Y., Tachibana, K., Hiraoka, K., Namba, T., Yamasaki, K, Hashiya, N., Aoki, M., Ogihara, T., Yasufumi, K., Morishita, R. 2002a Local delivery of plasmid DNA into rat carotid artery using ultrasound. Circulation 105, 1233–1239.

    Article  Google Scholar 

  • Taniyama, Y., Tachibana, K., Hiraoka, K., Aoki, M., Yamamoto, S., Matsumoto, K., Nakamura, T., Ogihara, T., Kaneda, Y., Morishita, R. 2002b Development of safe and efficient novel nonviral gene transfer using ultrasound: enhancement of transfection efficiency of naked plasmid DNA in skeletal muscle. Gene Ther. 9, 372–380.

    Article  Google Scholar 

  • Tiukinhoy, S.D., Khan, A.A., Huang, S., Klegerman, M.E., MacDonald, R.C., McPherson, D.D. 2004 Novel echogenic drug-immunoliposomes for drug delivery. Invest. Radiol. 39, 104–110.

    Article  Google Scholar 

  • Topol, E.J., Leya, F., Pinkerton, C.A., et al. 1993 A comparison of directional atherectomy with coronary angioplasty in patients with coronary artery disease. N. Engl. J. Med. 329, 221–227.

    Article  Google Scholar 

  • Tu, J., Guan, J.F., Matula, T.J., Crum, L.A., Wei R. 2008 Real-time measurements and modelling on dynamic behaviour of SonoVue bubbles based on light scattering technology. Chin. Phys. Lett. 25, 172–175.

    Article  Google Scholar 

  • Unger, E.C., McCreery, T.P., Sweitzer, R.H., Shen, D.K., Wu, G.L. 1998 In vitro studies of a new thrombus-specific ultrasound contrast agent. Am. J. Cardiol. 81, 58G–61G.

    Article  Google Scholar 

  • Unger, E.C., Hersh, E., Vannan, M., McCreery, T. 2001 Gene delivery using ultrasound contrast agents. Echocardiography 18, 355–361.

    Article  Google Scholar 

  • Unger, E.C., Matsunaga, T.O., McCreery, T., Schumann, P., Sweitzer, R., Quigley, R. 2002 Therapeutic applications of microbubbles. Eur. J. Radiol. 42, 160–168.

    Article  Google Scholar 

  • Unger, E.C., Porter, T., Culp, W., Labell, R., Matsunaga, T., Zutshi, R. 2004 Therapeutic applications of lipid-coated microbubbles. Adv. Drug Deliv. Rev. 56, 1291–1314.

    Article  Google Scholar 

  • van Leeuwen, T.G., van Erven, L., Meerten, J.H., Motamedi, M., Post, M.J., Borst, C. 1992 Origin of arterial wall dissections induced by pulsed excimer and mid-infrared laser ablation in the pig. J. Am. Coll. Cardiol. 19, 1610–1618.

    Article  Google Scholar 

  • van Leeuwen, T.G., Meertens, J.H., Velema, E., Post, M.J., Borst, C. 1993 Intraluminal vapor bubble induced by excimer laser pulse causes microsecond arterial dilation and invagination leading to extensive wall damage in the rabbit. Circulation 87, 1258–1263.

    Article  Google Scholar 

  • van Leeuwen, T.G., Janse, E.D., Welch, A.J., Borst, C. 1996 Excimer laser induced bubble: dimensions, theory, and implications for laser angioplasty. Lasers Surg. Med. 18, 381–390.

    Article  Google Scholar 

  • van Leeuwen, T.G., Velema, E., Pasterkamp, G., Post, M.J., Borst, C. 1998 Saline flush during excimer laser angioplasty: short and long term effects in the rabbit femoral artery. Lasers Surg. Med. 23, 128–140.

    Article  Google Scholar 

  • van Wamel, A., Bouakaz, A., Bernard, B., Ten Cate, F., De Jong, N. 2004 Radionuclide tumour therapy with ultrasound contrast microbubbles. Ultrasonics 42, 903–906.

    Article  Google Scholar 

  • Vogel, A., Engelhardt, R., Behnle, U., Parlitz, U. 1996 Minimization of cavitation effects in pulsed laser ablation illustrated on laser angioplasty. Appl. Phys. B 62, 173–182.

    Article  Google Scholar 

  • Vogel, A., Schmidt, P., Flucke, B. 2001 Minimization of thermo-mechanical side effects in IR ablation by use of Q-switched double pulses. Proc. SPIE 4257, 184–191.

    Article  Google Scholar 

  • Vogel, A., Schmidt, P., Flucke, B. 2002 Minimization of thermomechanical side effects and increase in ablation efficiency in IR ablation by use of multiply Q-switched laser pulses Proc. SPIE 4617, 105–111.

    Article  Google Scholar 

  • Vogel, A., Venugopalan, V. 2003 Mechanisms of pulsed laser ablation of biological tissues. Chem. Rev. 103, 577–644.

    Article  Google Scholar 

  • von Bibra, H., Voigt, J.U., Froman, M., Bone, D., Wranne, B., Juhlin-Dannfeldt, A. 1999 Interaction of microbubbles with ultrasound. Echocardiography 16, 733–741.

    Article  Google Scholar 

  • von Knobelsdorff, G., Braur, P., Tonner, P.H., Hännel, F, Naegele, H., Stubbe, H.M., Schulte am Esch, J. 1997 Transmyocardial laser revascularisation induces cerebral microembolisation. Anesthesiology 87, 58–62.

    Article  Google Scholar 

  • Watanabe, T., Kukita, Y. 1993 Translational and radial motions of a bubble in an acoustic standing wave field. Phys. Fluids A 5, 2682–2688.

    Article  Google Scholar 

  • Wei, K., Jayaweera, A.R., Firoozan, S., Linka, A., Skyba, D.M., Kaul, S. 1998 Quantification of myocardial blood flow with ultrasound induced destruction of microbubbles administrated as a contrast venous infusion. Circulation 97, 473–483.

    Article  Google Scholar 

  • Wu, J. 1998 Temperature rise generated by ultrasound in the presence of contrast agent. Ultrasound Med. Biol. 24, 267–274.

    Article  Google Scholar 

  • Wu, J. 2002 Theoretical study on shear stress generated by microstreaming surrounding contrast agents attached to living cells. Ultrasound Med. Biol. 28, 125–129.

    Article  Google Scholar 

  • Wu, S.Z., Shu, M.C., Scott D.R., Hwang, N.H. 1994 The closing behaviour of Medtronic Hall mechanical heart valves. ASAIO J. 40, M702–M706.

    Article  Google Scholar 

  • Wu, S.Z., Gao, B.Z., Hwang, N.H. 1995 Transient pressure at closing of a monoleaflet mechanical heart valve prosthesis: mounting compliance effect. J. Heart Valve Dis. 4, 553–567.

    Article  Google Scholar 

  • Wu, J., Ross, J.P., Chiu, J.F. 2002 Reparable sonoporation generated by microstreaming. J. Acoust. Soc. Am. 111, 1460–1464.

    Article  Google Scholar 

  • Wu, J., Pepe, J., Dewitt, W. 2003 Nonlinear behaviors of contrast agents relevant to diagnostic and therapeutic applications. Ultrasound Med. Biol. 29, 555–562.

    Article  Google Scholar 

  • Ye, T., Bull, J.L. 2004 Direct numerical simulations of micro-bubble expansion in gas embolotherapy. J. Biomech. Eng. 126, 745–759.

    Article  Google Scholar 

  • Ye, T. , Bull, J.L. 2006 Microbubble expansion in a flexible tube. J. Biomech. Eng. 128, 554–563.

    Article  Google Scholar 

  • Yu, A.S.L., Levy, E. 1997 Paradoxical cerebral air embolism from a hemodialysis catheter. Am. J. Kidney Dis. 29, 453–455.

    Article  Google Scholar 

  • Zapanta, C.M., Stinebring, D.R., Sneckenberger, D.S., Deutsch, S., Geselowitz, D.B., Tarbell, J.M., Snyder, A.J., Rosenberg, G., Weiss, W.J., Pae, W.E., Pierce, W.S. 1996 In vivo observation of cavitation on prosthetic heart valves. ASAIO J. 42, M550–M555.

    Article  Google Scholar 

  • Zapanta, C.M., Stinebring, D.R., Deutsch, S., Geselowitz, D.B., Tarbell, J.M. 1998 A comparison of the cavitation potential of prosthetic heart valves based on valve closing dynamics. J. Heart Valve Dis. 7, 655–667.

    Google Scholar 

  • Zhang, P., Yeo, J.H., Hwang, N.H.C. 2006 Development of squeeze flow in mechanical heart valve: a particle image velocimetry investigation. ASAIO J. 52, 391–397.

    Article  Google Scholar 

  • Zheng, H., Dayton, P.A., Caskey, C., Zhao, S., Qin, S., Ferrara, K.W. 2007 Ultrasound-driven microbubble oscillation and translation within small phantom vessels. Ultrasound Med. Biol. 33, 1978–1987.

    Article  Google Scholar 

  • Zhigang, W., Zhiyu, L., Haitao, R., Hong, R., Qunxia, Z., Ailong, H., Qi, L., Chunjing, Z., Hailin, T., Lin, G., Mingli, P., Shiyu, P. 2004 Ultrasound-mediated microbubble destruction enhances VEGF gene delivery to the infarcted myocardium in rats. Clin. Imaging 28, 395–398.

    Article  Google Scholar 

  • Zhou, Z., Mukherjee, D., Wang, K., Zhou, X., Tarakji, K., Ellis, K., Chan, A.W., Penn, M.S., Ostensen, J., Thomas, J.D. 2002 Induction of angiogenesis in a canine model of chronic myocardial ischemia with intravenous infusion of vascular endothelial growth factor (VEGF) combined with ultrasound energy and echo contrast agent. J. Am. Coll. Cardiol. 39, 396.

    Article  Google Scholar 

  • Ziser, A., Adir, Y., Lavon, H., Shupak, A. 1999 Hyperbaric oxygen therapy for massive arterial air embolism during cardiac operations. J. Thorac. Cardiovasc. Surg. 117, 818–821.

    Article  Google Scholar 

  • Zotz, R.J., Erbel, R., Philipp, A., Judt, A., Wagner, H., Lauterborn, W., Meyer, J. 1992 High-speed rotational angioplasty-indiced echo contrast in vivo and in vitro optical analysis. Catheter. Cardiovasc. Diagn. 26, 98–109.

    Article  Google Scholar 

  • Zubarev, R.P., Kolpakov, E.V., Morov, G.V., Gabeskiriia, R.I. 1976 Problems of thrombogenesis and destruction of the superficial layer of implanted artificial heat valves. Med. Tekh. 4, 26–29.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emil-Alexandru Brujan .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brujan, EA. (2011). Cardiovascular Cavitation. In: Cavitation in Non-Newtonian Fluids. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15343-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15343-3_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15342-6

  • Online ISBN: 978-3-642-15343-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics