Skip to main content

On the Relative Merits of Simple Local Search Methods for the MAX-SAT Problem

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6175))

Abstract

Algorithms based on local search are popular for solving many optimization problems including the maximum satisfiability problem (MAX-SAT). With regard to MAX-SAT, the state of the art in performance for universal (i.e. non specialized solvers) seems to be variants of Simulated Annealing (SA) and MaxWalkSat (MWS), stochastic local search methods. Local search methods are conceptually simple, and they often provide near optimal solutions. In contrast, it is relatively rare that local search algorithms are analyzed with respect to the worst-case approximation ratios. In the first part of the paper, we build on Mastrolilli and Gambardella’s work [14] and present a worst-case analysis of tabu search for the MAX-k-SAT problem. In the second part of the paper, we examine the experimental performance of determinstic local search algorithms (oblivious and non-oblivious local search, tabu search) in comparison to stochastic methods (SA and MWS) on random 3-CNF and random k-CNF formulas and on benchmarks from MAX-SAT competitions. For random MAX-3-SAT, tabu search consistently outperforms both oblivious and non-oblivious local search, but does not match the performance of SA and MWS. Initializing with non-oblivious local search improves both the performance and the running time of tabu search. The better performance of the various methods that escape local optima in comparison to the more basic oblivious and non-oblivious local search algorithms (that stop at the first local optimum encountered) comes at a cost, namely a significant increase in complexity (which we measure in terms of variable flips). The performance results observed for the unweighted MAX-3-SAT problem carry over to the weighted version of the problem, but now the better performance of MWS is more pronounced. In contrast, as we consider MAX-k-SAT as k is increased, MWS loses its advantage. Finally, on benchmark instances, it appears that simulated annealing and tabu search initialized with non-oblivious local search outperform the other methods on most instances.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aarts, E., Lenstra, J. (eds.): Local Search in Combinatorial Optimization, 2nd edn. Princeton University Press, Princeton (2003)

    MATH  Google Scholar 

  2. Achlioptas, D., Naor, A., Peres, Y.: Rigorous location of phase transitions in hard optimization problems. Nature 435, 759–764 (2005)

    Article  Google Scholar 

  3. Achlioptas, D., Naor, A., Peres, Y.: On the maximum satisfiability of random formulas. JACM 54(2) (2007)

    Google Scholar 

  4. Achlioptas, D., Peres, Y.: The threshold for random k-sat is 2k log 2 − o(k). JAMS 17(2), 947–973 (2004)

    MATH  Google Scholar 

  5. Argerlich, J., Li, C.M., Manya, F., Planes, J.: The first and second max-sat evaluations. Journal on Satisfiability, Boolean Modeling and Computation 4, 251–278 (2008)

    MATH  Google Scholar 

  6. Asano, T., Williamson, D.P.: Improved approximation algorithms for max sat. J. Algorithms 42(1), 173–202 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Feige, U., Goemans, M.: Approximating the value of two power proof systems, with applications to max 2sat and max dicut. In: ISTCS 1995: Proceedings of the 3rd Israel Symposium on the Theory of Computing Systems (ISTCS 1995), Washington, DC, USA, p. 182. IEEE Computer Society, Los Alamitos (1995)

    Google Scholar 

  8. Hansen, P., Jaumard, B.: Algorithms for the maximum satisfiability problem. Computing 44(4), 279–303 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  9. Håstad, J.: Some optimal inapproximability results. J. ACM 48(4), 798–859 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Heras, F., Larrosa, J., de Givry, S., Schiex, T.: 2006 and 2007 max-sat evaluations: Contributed instances. JSAT 4(2-4), 239–250 (2008)

    MATH  Google Scholar 

  11. Johnson, D.S.: Approximation algorithms for combinatorial problems. In: STOC 1973: Proceedings of the fifth annual ACM symposium on Theory of computing, pp. 38–49. ACM, New York (1973)

    Chapter  Google Scholar 

  12. Kaporis, A., Kirousis, L.M., Lalas, E.G.: The probabilistic analysis of a greedy satisfiability algorithm. Random Structures & Algorithms 28(4), 444–480 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Khanna, S., Motwani, R., Sudan, M., Vazirani, U.: On syntactic versus computational views of approximability. SIAM J. Comput. 28(1), 164–191 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Mastrolilli, M., Gambardella, L.M.: Max-2-sat: How good is tabu search in the worst-case? In: AAAI, pp. 173–178 (2004)

    Google Scholar 

  15. Mertens, S., Mezard, M., Zecchina, R.: Threshold values for random k-sat from the cavity method. Random Structures & Algorithms 28(3), 340–373 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Pennock, D.M., Stout, Q.F.: Exploiting a theory of phase transitions in three-satisfiability problems. In: Proc. AAAI 1996, pp. 253–258. AAAI Press/MIT Press (1996)

    Google Scholar 

  17. Spears, W.M.: Simulated annealing for hard satisfiability problems. In: Workshop, pp. 533–558. American Mathematical Society, Providence (1993)

    Google Scholar 

  18. Xu, H., Rutenbar, R.A., Sakallah, K.: sub-sat: a formulation for relaxed boolean satisfiability with applications in routing. In: ISPD 2002: Proceedings of the 2002 international symposium on Physical design, pp. 182–187. ACM, New York (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pankratov, D., Borodin, A. (2010). On the Relative Merits of Simple Local Search Methods for the MAX-SAT Problem. In: Strichman, O., Szeider, S. (eds) Theory and Applications of Satisfiability Testing – SAT 2010. SAT 2010. Lecture Notes in Computer Science, vol 6175. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14186-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14186-7_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14185-0

  • Online ISBN: 978-3-642-14186-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics