Skip to main content

Polynomial-Space Approximation of No-Signaling Provers

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6198))

Abstract

In two-prover one-round interactive proof systems, no- signaling provers are those who are allowed to use arbitrary strategies, not limited to local operations, as long as their strategies cannot be used for communication between them. The study of multi-prover interactive proof systems with no-signaling provers has been motivated by the study of those with provers sharing quantum states. The relation between them is that no-signaling strategies include all the strategies realizable by provers sharing arbitrary entangled quantum states, and more. It was known that PSPACE ⊆ MIPns(2,1) ⊆ EXP, where MIPns(2,1) is the class of languages having a two-prover one-round interactive proof system with no-signaling provers.

This paper shows MIPns(2,1) = PSPACE. This is proved by constructing a fast parallel algorithm which approximates within an additive error the maximum winning probability of no-signaling players in a given cooperative two-player one-round game. The algorithm uses the fast parallel algorithm for the mixed packing and covering problem by Young (FOCS 2001).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Babai, L., Fortnow, L., Lund, C.: Non-deterministic exponential time has two-prover interactive protocols. Computational Complexity 1(1), 3–40 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  2. Beckman, D., Gottesman, D., Nielsen, M.A., Preskill, J.: Causal and localizable quantum operations. Physical Review A 64(052309) (2001)

    Google Scholar 

  3. Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics 1, 195–200 (1964)

    Google Scholar 

  4. Ben-Or, M., Goldwasser, S., Kilian, J., Wigderson, A.: Multi-prover interactive proofs: How to remove intractability assumptions. In: Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing (STOC), pp. 113–131 (1988)

    Google Scholar 

  5. Borodin, A.: On relating time and space to size and depth. SIAM Journal on Computing 6(4), 733–744 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cai, J.Y., Condon, A., Lipton, R.J.: PSPACE is provable by two provers in one round. Journal of Computer and System Sciences 48(1), 183–193 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cleve, R., Høyer, P., Toner, B., Watrous, J.: Consequences and limits of nonlocal strategies. In: Proceedings: Nineteenth Annual IEEE Conference on Computational Complexity (CCC), pp. 236–249 (2004)

    Google Scholar 

  8. Even, S., Selman, A.L., Yacobi, Y.: The complexity of promise problems with applications to public-key cryptography. Information and Control 61(2), 159–173 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  9. Feige, U.: On the success probability of the two provers in one-round proof systems. In: Proceedings of the Sixth Annual Structure in Complexity Theory Conference (SCT), pp. 116–123 (1991)

    Google Scholar 

  10. Feige, U., Lovász, L.: Two-prover one-round proof systems: Their power and their problems. In: Proceedings of the Twenty-Fourth Annual ACM Symposium on Theory of Computing (STOC), pp. 733–744 (1992)

    Google Scholar 

  11. Fortnow, L., Rompel, J., Sipser, M.: On the power of multi-prover interactive protocols. Theoretical Computer Science 134(2), 545–557 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  12. Goldreich, O.: Computational Complexity: A Conceptual Perspective. Cambridge University Press, Cambridge (2008)

    MATH  Google Scholar 

  13. Gutoski, G.: Properties of local quantum operations with shared entanglement. Quantum Information and Computation 9(9–10), 739–764 (2009)

    MATH  MathSciNet  Google Scholar 

  14. Holenstein, T.: Parallel repetition: Simplifications and the no-signaling case. Theory of Computing 5(Article 8), 141–172 (2009)

    Google Scholar 

  15. Ito, T., Kobayashi, H., Matsumoto, K.: Oracularization and two-prover one-round interactive proofs against nonlocal strategies. In: Proceedings: Twenty-Fourth Annual IEEE Conference on Compuational Complexity (CCC), pp. 217–228 (2009)

    Google Scholar 

  16. Ito, T., Kobayashi, H., Preda, D., Sun, X., Yao, A.C.C.: Generalized Tsirelson inequalities, commuting-operator provers, and multi-prover interactive proof systems. In: Proceedings: Twenty-Third Annual IEEE Conference on Compuational Complexity (CCC), pp. 187–198 (2008)

    Google Scholar 

  17. Jain, R., Ji, Z., Upadhyay, S., Watrous, J.: QIP=PSPACE. In: Proceedings of the Forty-Second Annual ACM Symposium on Theory of Computing STOC (2010) (to appear) arXiv:0907.4737v2 [quant-ph]

    Google Scholar 

  18. Jain, R., Upadhyay, S., Watrous, J.: Two-message quantum interactive proofs are in PSPACE. In: Proceedings: Fiftieth Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 534–543 (2009)

    Google Scholar 

  19. Jain, R., Watrous, J.: Parallel approximation of non-interactive zero-sum quantum games. In: Proceedings: Twenty-Fourth Annual IEEE Conference on Compuational Complexity (CCC), pp. 243–253 (2009)

    Google Scholar 

  20. Kempe, J., Kobayashi, H., Matsumoto, K., Toner, B., Vidick, T.: Entangled games are hard to approximate. arXiv:0704.2903v2 [quant-ph] (2007)

    Google Scholar 

  21. Kempe, J., Kobayashi, H., Matsumoto, K., Toner, B., Vidick, T.: Entangled games are hard to approximate. In: Proceedings: Forty-Ninth Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 447–456 (2008)

    Google Scholar 

  22. Khalfin, L.A., Tsirelson, B.S.: Quantum and quasi-classical analogs of Bell inequalities. In: Symposium on the Foundations of Modern Physics, pp. 441–460 (1985)

    Google Scholar 

  23. Kobayashi, H., Matsumoto, K.: Quantum multi-prover interactive proof systems with limited prior entanglement. Journal of Computer and System Sciences 66(3), 429–450 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  24. Plotkin, S.A., Shmoys, D.B., Tardos, É.: Fast approximation algorithms for fractional packing and covering problems. Mathematics of Operations Research 20(2), 257–301 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  25. Popescu, S., Rohrlich, D.: Quantum nonlocality as an axiom. Foundations of Physics 24(3), 379–385 (1994)

    Article  MathSciNet  Google Scholar 

  26. Preda, D.: Private communication

    Google Scholar 

  27. Rastall, P.: Locality, Bell’s theorem, and quantum mechanics. Foundations of Physics 15(9), 963–972 (1985)

    Article  MathSciNet  Google Scholar 

  28. Schrijver, A.: Theory of Linear and Integer Programming. Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley, Chichester (1986)

    MATH  Google Scholar 

  29. Watrous, J.: PSPACE has constant-round quantum interactive proof systems. Theoretical Computer Science 292(3), 575–588 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  30. Werner, R.F.: An application of Bell’s inequatilies to a quantum state extension problem. Letters in Mathematical Physics 14(4), 359–363 (1989)

    Article  Google Scholar 

  31. Werner, R.F.: Remarks on a quantum state extension problem. Letters in Mathematical Physics 19(4), 319–326 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  32. Young, N.E.: Sequential and parallel algorithms for mixed packing and covering. In: Proceedings: Forty-Second IEEE Symposium on Foundations of Computer Science (FOCS), pp. 538–546 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ito, T. (2010). Polynomial-Space Approximation of No-Signaling Provers. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds) Automata, Languages and Programming. ICALP 2010. Lecture Notes in Computer Science, vol 6198. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14165-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14165-2_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14164-5

  • Online ISBN: 978-3-642-14165-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics