Skip to main content

Avoiding Simplicity Is Complex

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6158))

Abstract

It is a trivial observation that every decidable set has strings of length n with Kolmogorov complexity logn + O(1) if it has any strings of length n at all. Things become much more interesting when one asks whether a similar property holds when one considers resource-bounded Kolmogorov complexity. This is the question considered here: Can a feasible set A avoid accepting strings of low resource-bounded Kolmogorov complexity, while still accepting some (or many) strings of length n?

More specifically, this paper deals with two notions of resource-bounded Kolmogorov complexity: Kt and KNt. The measure Kt was defined by Levin more than three decades ago and has been studied extensively since then. The measure KNt is a nondeterministic analog of Kt. For all strings x, Kt(x) ≥ KNt(x); the two measures are polynomially related if and only if NEXP ⊆ EXPpoly [5].

Many longstanding open questions in complexity theory boil down to the question of whether there are sets in P that avoid all strings of low Kt complexity. For example, the EXP vs ZPP question is equivalent to (one version of) the question of whether avoiding simple strings is difficult: (EXP = ZPP if and only if there exist ε> 0 and a “dense” set in P having no strings x with Kt(x) ≤ |x|ε [4]).

Surprisingly, we are able to show unconditionally that avoiding simple strings (in the sense of KNt complexity) is difficult. Every dense set in NP ∪ co-NP contains infinitely many strings x such that KNt(x) ≤ |x|ε for some ε. The proof does not relativize. As an application, we are able to show that if E = NE, then accepting paths for nondeterministic exponential time machines can be found somewhat more quickly than the brute-force upper bound, if there are many accepting paths.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allender, E.: Some consequences of the existence of pseudorandom generators. Journal of Computer and System Sciences 39, 101–124 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  2. Allender, E.: Applications of time-bounded Kolmogorov complexity in complexity theory. In: Watanabe, O. (ed.) Kolmogorov Complexity and Computational Complexity, pp. 4–22. Springer, Heidelberg (1992)

    Google Scholar 

  3. Allender, E.: When worlds collide: Derandomization, lower bounds, and Kolmogorov complexity. In: Hariharan, R., Mukund, M., Vinay, V. (eds.) FSTTCS 2001. LNCS, vol. 2245, pp. 1–15. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  4. Allender, E., Buhrman, H., Koucký, M., van Melkebeek, D., Ronneburger, D.: Power from random strings. SIAM Journal on Computing 35, 1467–1493 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Allender, E., Koucký, M., Ronneburger, D., Roy, S.: The pervasive reach of resource-bounded Kolmogorov complexity in computational complexity theory. Journal of Computer and System Sciences (to appear)

    Google Scholar 

  6. Arora, S., Barak, B.: Computational Complexity, a modern approach. Cambridge University Press, Cambridge (2009)

    MATH  Google Scholar 

  7. Babai, L., Fortnow, L., Lund, C.: Non-deterministic exponential time has two-prover interactive protocols. Computational Complexity 1, 3–40 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  8. Babai, L., Fortnow, L., Nisan, N., Wigderson, A.: BPP has subexponential time simulations unless EXPTIME has publishable proofs. Computational Complexity 3, 307–318 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  9. Buhrman, H., Fortnow, L., Laplante, S.: Resource-bounded Kolmogorov complexity revisited. SIAM Journal on Computing 31(3), 887–905 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Buhrman, H., Fortnow, L., Santhanam, R.: Unconditional lower bounds against advice. In: Albers, S., et al. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 195–209. Springer, Heidelberg (2009)

    Google Scholar 

  11. Hartmanis, J., Immerman, N., Sewelson, V.: Sparse sets in NP-P: EXPTIME versus NEXPTIME. Information and Control 65(2/3), 158–181 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  12. Håstad, J., Impagliazzo, R., Levin, L., Luby, M.: A pseudorandom generator from any one-way function. SIAM Journal on Computing 28, 1364–1396 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  13. Impagliazzo, R., Tardos, G.: Decision versus search problems in super-polynomial time. In: Proc. IEEE Symp. on Found. of Comp. Sci (FOCS), pp. 222–227 (1989)

    Google Scholar 

  14. Impagliazzo, R., Wigderson, A.: P = BPP if E requires exponential circuits: Derandomizing the XOR lemma. In: Proc. ACM Symp. on Theory of Computing (STOC) 1997, pp. 220–229 (1997)

    Google Scholar 

  15. Levin, L.A.: Randomness conservation inequalities; information and independence in mathematical theories. Information and Control 61, 15–37 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  16. Lund, C., Fortnow, L., Karloff, H., Nisan, N.: Algebraic methods for interactive proof systems. Journal of the ACM 39, 859–868 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  17. Shamir, A.: IP = PSPACE. Journal of the ACM 39, 869–877 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  18. Spakowski, H.: Personal Communication (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Allender, E. (2010). Avoiding Simplicity Is Complex. In: Ferreira, F., Löwe, B., Mayordomo, E., Mendes Gomes, L. (eds) Programs, Proofs, Processes. CiE 2010. Lecture Notes in Computer Science, vol 6158. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13962-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13962-8_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13961-1

  • Online ISBN: 978-3-642-13962-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics