Skip to main content

Abstract

QCD is the underlying quantum field theory describing the strong interactions, and lattice QCD is the technique to solve it. Large scale computing resources afford the opportunity to answer key questions regarding the structure and spectrum of hadrons and systems of hadrons. By considering new simulations at the physical quark masses, we review the recent progress that has been made in this exciting area by the QCDSF collaboration.

QCDSF Collaboration (HU Berlin, ZIB Berlin, DESY Hamburg and Zeuthen, U Edinburgh, U Leipzig, U Liverpool, UNAM Mexico City, IHEP Protvino, ITEP Moscow, TU Munich, U Regensburg)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Göckeler, P. Hägler, R. Horsley, Y. Nakamura, D. Pleiter, P.E.L. Rakow, A. Schäfer, G. Schierholz, H. Stüben and J.M. Zanotti, Phys. Rev. Lett. 98 (2007) 222001 [arXiv:hep-lat/0612032].

    Article  Google Scholar 

  2. D. Brömmel, M. Diehl, M. Göckeler, P. Hägler, R. Horsley, Y. Nakamura, D. Pleiter, P.E.L. Rakow, A. Schäfer, G. Schierholz, H. Stüben and J.M. Zanotti, Phys. Rev. Lett. 101 (2008) 122001 [arXiv:0708.2249 [hep-lat]].

    Article  Google Scholar 

  3. M. Göckeler, R. Horsley, T. Kaltenbrunner, Y. Nakamura, D. Pleiter, P.E.L. Rakow, A. Schäfer, G. Schierholz, H. Stüben, N. Warkentin and J.M. Zanotti, Phys. Rev. Lett. 101 (2008) 112002 [arXiv:0804.1877 [hep-lat]].

    Article  Google Scholar 

  4. D. Brömmel, M. Göckeler, P. Hägler, R. Horsley, Y. Nakamura, M. Ohtani, D. Pleiter, P.E.L. Rakow, A. Schäfer, G. Schierholz, W. Schroers, H. Stüben and J.M. Zanotti, Eur. Phys. J. ST 162 (2008) 63 [arXiv:0804.4706 [hep-lat]].

    Google Scholar 

  5. M. Göckeler, R. Horsley, T. Kaltenbrunner, Y. Nakamura, D. Pleiter, P.E.L. Rakow, A. Schäfer, G. Schierholz, H. Stüben, N. Warkentin and J.M. Zanotti, Nucl. Phys. B 812 (2009) 205 [arXiv:0810.3762 [hep-lat]].

    Article  Google Scholar 

  6. M. Göckeler, R. Horsley, Y. Nakamura, D. Pleiter, P. E. L. Rakow, G. Schierholz and J. Zanotti, arXiv:0810.5337 [hep-lat].

  7. V.M. Braun, M. Göckeler, R. Horsley, T. Kaltenbrunner, Y. Nakamura, D. Pleiter, P.E.L. Rakow, A. Schäfer, G. Schierholz, H. Stüben, N. Warkentin and J.M. Zanotti, Phys. Rev. D 79 (2009) 034504 [arXiv:0811.2712 [hep-lat]].

    Article  Google Scholar 

  8. N. Cundy, M. Göckeler, R. Horsley, T. Kaltenbrunner, A. D. Kennedy, Y. Nakamura, H. Perlt, D. Pleiter, P. E. L. Rakow, A. Schäfer, G. Schierholz, A. Schiller, H. Stüben and J. M. Zanotti, Phys. Rev. D 79 (2009) 094507 [arXiv:0901.3302 [hep-lat]].

    Article  Google Scholar 

  9. V.M. Braun, M. Göckeler, R. Horsley, T. Kaltenbrunner, A. Lenz, Y. Nakamura, D. Pleiter, P.E.L. Rakow, J. Rohrwild, A. Schäfer, G. Schierholz, H. Stüben, N. Warkentin and J.M. Zanotti, Phys. Rev. Lett. 103 (2009) 072001 [arXiv:0902.3087 [hep-ph]].

    Article  Google Scholar 

  10. W. Bietenholz, N. Cundy, M. Göckeler, R. Horsley, H. Perlt, D. Pleiter, P.E.L. Rakow, G. Schierholz, A. Schiller, T. Streuer and J.M. Zanotti, arXiv:0910.2437 [hep-lat].

  11. W. Bietenholz, V. Bornyakov, N. Cundy, M. Göckeler, R. Horsley, A.D. Kennedy, Y. Nakamura, H. Perlt, D. Pleiter, P.E.L. Rakow, A. Schäfer, G. Schierholz, A. Schiller, H. Stüben and J.M. Zanotti, arXiv:0910.2963 [hep-lat].

  12. Y. Nakamura, G. Schierholz, T. Streuer and H. Stüben, in High Performance Computing in Science and Engineering, Transactions of the Third Joint HLRB and KONWIHR Status and Result Workshop, Dec. 3–4, 2007, Leibniz Supercomputing Centre, Garching, Germany, p. 627, Springer (Berlin, Heidelberg, New York, 2009)

    Google Scholar 

  13. M. Göckeler, T. R. Hemmert, R. Horsley, D. Pleiter, P. E. L. Rakow, A. Schäfer and G. Schierholz, Phys. Rev. D 71 (2005) 034508 [arXiv:hep-lat/0303019].

    Article  Google Scholar 

  14. T. R. Hemmert, PoS LAT2009 (2009), 146.

    Google Scholar 

  15. G. Martinelli, C. Pittori, C. T. Sachrajda, M. Testa and A. Vladikas, Nucl. Phys. B 445 (1995) 81 [arXiv:hep-lat/9411010]; M. Göckeler, R. Horsley, H. Oelrich, H. Perlt, D. Petters, P.E.L. Rakow, A. Schäfer, G. Schierholz and A. Schiller, Nucl. Phys. B 544 (1999) 699 [arXiv:hep-lat/9807044].

  16. A. Ali Khan, M. Göckeler, P. Hägler, T.R. Hemmert, R. Horsley, D. Pleiter, P.E.L. Rakow, A. Schäfer, G. Schierholz, T. Wollenweber and J.M. Zanotti, Phys. Rev. D 74 (2006) 094508 [arXiv:hep-lat/0603028].

    Article  Google Scholar 

  17. G. Colangelo, S. Dürr and C. Haefeli, Nucl. Phys. B 721 (2005) 136 [arXiv:hep-lat/0503014].

    Article  MATH  Google Scholar 

  18. R.G. Edwards, G.T. Fleming, P. Hägler, J.W. Negele, K. Orginos, A. Pochinsky, D.B. Renner, D.G. Richards and W. Schroers, Phys. Rev. Lett. 96 (2006) 052001 [arXiv:hep-lat/0510062].

    Article  Google Scholar 

  19. T. Yamazaki, Y. Aoki, T. Blum, H. W. Lin, M.F. Lin, S. Ohta, S. Sasaki, R.J. Tweedie and J.M. Zanotti, Phys. Rev. Lett. 100 (2008) 171602 [arXiv:0801.4016 [hep-lat]].

    Article  Google Scholar 

  20. S. Alekhin, J. Blümlein, S. Klein and S. Moch, arXiv:0908.2766 [hep-ph].

  21. W. Detmold, W. Melnitchouk and A. W. Thomas, Mod. Phys. Lett. A 18 (2003) 2681 [arXiv:hep-lat/0310003]; W. Detmold and C. J. D. Lin, Phys. Rev. D 71 (2005) 054510 [arXiv:hep-lat/0501007].

  22. M. Dorati, T.A. Gail and T.R. Hemmert, Nucl. Phys. A 798 (2008) 96 [arXiv:nucl-th/0703073].

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Y. Nakamura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nakamura, Y., Schierholz, G., Stüben, H., Zanotti, J., QCDSF Collaboration. (2010). Lattice Investigation of Nucleon Structure: Towards the Physical Point. In: Wagner, S., Steinmetz, M., Bode, A., Müller, M. (eds) High Performance Computing in Science and Engineering, Garching/Munich 2009. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13872-0_36

Download citation

Publish with us

Policies and ethics