Skip to main content

On Rationality of the Intersection Points of a Line with a Plane Quartic

  • Conference paper
Arithmetic of Finite Fields (WAIFI 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6087))

Included in the following conference series:

  • 734 Accesses

Abstract

We study the rationality of the intersection points of certain lines and smooth plane quartics C defined over \(\mathbb{F}_q\). For q ≥ 127, we prove the existence of a line such that the intersection points with C are all rational. Using another approach, we further prove the existence of a tangent line with the same property as soon as char\(\mathbb{F}_q \neq 2\) and q ≥ 662 + 1. Finally, we study the probability of the existence of a rational flex on C and exhibit a curious behavior when char \(\mathbb{F}_q=3\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aubry, Y., Perret, M.: A Weil theorem for singular curves. In: Pellikaan, P., De Gruyter, V. (eds.) Proceedings of arithmetic, geometry and coding theory, vol. IV, pp. 1–7 (1995)

    Google Scholar 

  2. Ballico, E., Cossidente, A.: On the number of rational points of hypersurfaces over finite fields. Results Math. 51, 1–4 (2007) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bourbaki, N.: Elements of mathematics. Commutative algebra. ch. 5-7 (Éléments de mathématique. Algèbre commutative. Chapitres 5 à 7.) Reprint of the 1985 original. Springer, Berlin (2006)

    Google Scholar 

  4. Cantor, D.: Computing in the Jacobian of a hyperelliptic curve. Math. Comp. 48(177), 95–101 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  5. Diem, C., Thomé, E.: Index calculus in class groups of non-hyperelliptic curves of genus three. J. Cryptology 21(4), 593–611 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. Eisenbud, D., Harris, J.: The geometry of schemes. Graduate Texts in Mathematics, vol. 197. Springer, New York (2000)

    MATH  Google Scholar 

  7. Flon, S., Oyono, R., Ritzenthaler, C.: Fast addition on non-hyperelliptic genus 3 curves. In: Algebraic geometry and its applications. Ser. Number Theory Appl., vol. 5, pp. 1–28. World Sci. Publ., Hackensack (2008)

    Google Scholar 

  8. Fukasawa, S.: Galois points on quartic curves in characteristic 3. Nihonkai Math. J. 17(2), 103–110 (2006)

    MATH  MathSciNet  Google Scholar 

  9. Fukasawa, S.: On the number of Galois points for a plane curve in positive characteristic. II. Geom. Dedicata 127, 131–137 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  10. Fukasawa, S.: On the number of Galois points for a plane curve in positive characteristic. Comm. Algebra 36(1), 29–36 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  11. Fukasawa, S.: Galois points for a plane curve in arbitrary characteristic. Geom. Dedicata 139, 211–218 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. Griffiths, P., Harris, J.: Principles of algebraic geometry. Wiley Classics Library. John Wiley & Sons Inc., New York (1994); Reprint of the 1978 original

    MATH  Google Scholar 

  13. Harris, J.: Galois groups of enumerative problems. Duke Math. J. 46(4), 685–724 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hartshorne, R.: Algebraic geometry. Graduate Texts in Mathematics, vol. 52. Springer, New York (1977)

    MATH  Google Scholar 

  15. Homma, M.: A souped-up version of pardini’s theorem and its application to funny curves. Compos. Math. 71, 295–302 (1989)

    MATH  MathSciNet  Google Scholar 

  16. Homma, M.: On duals of smooth plane curves. Proc. Am. Math. Soc. 118, 785–790 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  17. Howe, E.W., Lauter, K.E., Top, J.: Pointless curves of genus three and four. In: Aubry, Y., Lachaud, G. (eds.) Algebra, Geometry, and Coding Theory (AGCT 2003), Société Mathématique de France, Paris. Séminaires et Congrès, vol. 11 (2005)

    Google Scholar 

  18. Koblitz, N.: Elliptic curve cryptosystems. Math. Comp. 48(177), 203–209 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  19. Koblitz, N.: Hyperelliptic cryptosystems. J. cryptology 1, 139–150 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  20. Milne, J.: Fields and Galois theory, version 4.21, http://www.jmilne.org/math/CourseNotes/FT.pdf

  21. Kumar Murty, V., Scherk, J.: Effective versions of the Chebotarev density theorem for function fields. C. R. Acad. Sci. Paris Sér. I Math. 319(6), 523–528 (1994)

    MATH  MathSciNet  Google Scholar 

  22. Nart, E., Ritzenthaler, C.: Non hyperelliptic curves of genus three over finite fields of characteristic two. J. of Number Theory 116, 443–473 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  23. Ritzenthaler, C.: Problèmes arithmétiques relatifs à certaines familles de courbes sur les corps finis. PhD thesis, Université Paris VII (2003)

    Google Scholar 

  24. Serre, J.-P.: Zeta and L functions. In: Arithmetical Algebraic Geometry (Proc. Conf. Purdue Univ., 1963), pp. 82–92. Harper & Row, New York, (1965)

    Google Scholar 

  25. Stichtenoth, H.: Algebraic Function Fields and Codes. Lectures Notes in Mathematics, vol. 314. Springer, Heidelberg (1993)

    MATH  Google Scholar 

  26. Stöhr, K.-O., Voloch, J.F.: Weierstrass points and curves over finite fields. Proc. London Math. Soc. (3) 52(1), 1–19 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  27. Stöhr, K.-O., Voloch, J.F.: A formula for the cartier operator on plane algebraic curves. J. für die Reine und Ang. Math. 377, 49–64 (1987)

    Article  MATH  Google Scholar 

  28. Torres, F.: The approach of Stöhr-Voloch to the Hasse-Weil bound with applications to optimal curves and plane arcs (2000), http://arxiv.org/abs/math.AG/0011091

  29. Vermeulen, A.M.: Weierstrass points of weight two on curves of genus three. PhD thesis, university of Amsterdam, Amsterdam (1983)

    Google Scholar 

  30. Viana, P., la Torre, O.-P.: Curves of genus three in characteristic two. Comm. Algebra 33(11), 4291–4302 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  31. Wall, C.T.C.: Quartic curves in characteristic 2. Math. Proc. Cambridge Phil. Soc. 117, 393–414 (1995)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Oyono, R., Ritzenthaler, C. (2010). On Rationality of the Intersection Points of a Line with a Plane Quartic. In: Hasan, M.A., Helleseth, T. (eds) Arithmetic of Finite Fields. WAIFI 2010. Lecture Notes in Computer Science, vol 6087. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13797-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13797-6_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13796-9

  • Online ISBN: 978-3-642-13797-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics