Skip to main content

Methylxanthines and Inflammatory Cells

  • Chapter
  • First Online:

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 200))

Abstract

Both caffeine and theophylline have a variety of roles in regulating inflammatory responses. At pharmacologically relevant concentrations most of the effects of these commonly used methylxanthines are attributable to adenosine receptor blockade and histone deacetylase activation. In addition, at higher concentrations methylxanthines can suppress inflammation by inhibiting phosphodiesterases, thereby elevating intracellular cyclic adenosine monophosphate levels. In summary, methylxanthines regulate inflammation by multiple mechanisms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Baker AJ, Fuller RW (1992) Effect of cyclic adenosine monophosphate, 5′-(N-ethylcarboxyamido)-adenosine and methylxanthines on the release of thromboxane and lysosomal enzymes from human alveolar macrophages and peripheral blood monocytes in vitro. Eur J Pharmacol 211:157–161

    Article  PubMed  CAS  Google Scholar 

  • Barnes PJ (2006) Theophylline for COPD. Thorax 61:742–744

    Article  PubMed  CAS  Google Scholar 

  • Beavo JA, Rogers NL, Crofford OB, Baird CE, Hardman JG, Sutherland EW, Newman EV (1971) Effects of phosphodiesterase inhibitors on cyclic AMP levels and on lipolysis. Ann N Y Acad Sci 185:129–136

    Article  PubMed  CAS  Google Scholar 

  • Benito-Garcia E, Heller JE, Chibnik LB, Maher NE, Matthews HM, Bilics JA, Weinblatt ME, Shadick NA (2006) Dietary caffeine intake does not affect methotrexate efficacy in patients with rheumatoid arthritis. J Rheumatol 33:1275–1281

    PubMed  CAS  Google Scholar 

  • Bruns RF, Lu GH, Pugsley TA (1986) Characterization of the A2 adenosine receptor labeled by [3H]NECA in rat striatal membranes. Mol Pharmacol 29:331–346

    PubMed  CAS  Google Scholar 

  • Chavez-Valdez R, Wills-Karp M, Ahlawat R, Cristofalo EA, Nathan A, Gauda EB (2009) Caffeine modulates TNF-alpha production by cord blood monocytes: the role of adenosine receptors. Pediatr Res 65:203–208

    Article  PubMed  CAS  Google Scholar 

  • Che J, Chan ES, Cronstein BN (2007) Adenosine A2A receptor occupancy stimulates collagen expression by hepatic stellate cells via pathways involving protein kinase A, Src, and extracellular signal-regulated kinases 1/2 signaling cascade or p38 mitogen-activated protein kinase signaling pathway. Mol Pharmacol 72:1626–1636

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Corriden R, Inoue Y, Yip L, Hashiguchi N, Zinkernagel A, Nizet V, Insel PA, Junger WG (2006) ATP release guides neutrophil chemotaxis via P2Y2 and A3 receptors. Science 314:1792–1795

    Article  PubMed  CAS  Google Scholar 

  • Cosio BG, Tsaprouni L, Ito K, Jazrawi E, Adcock IM, Barnes PJ (2004) Theophylline restores histone deacetylase activity and steroid responses in COPD macrophages. J Exp Med 200:689–695

    Article  PubMed  CAS  Google Scholar 

  • Cronstein BN (2005) Low-dose methotrexate: a mainstay in the treatment of rheumatoid arthritis. Pharmacol Rev 57:163–172

    Article  PubMed  CAS  Google Scholar 

  • Csoka B, Nemeth ZH, Virag L, Gergely P, Leibovich SJ, Pacher P, Sun CX, Blackburn MR, Vizi ES, Deitch EA, Hasko G (2007) A2A adenosine receptors and C/EBPbeta are crucially required for IL-10 production by macrophages exposed to Escherichia coli. Blood 110:2685–2695

    Article  PubMed  CAS  Google Scholar 

  • Deaglio S, Dwyer KM, Gao W, Friedman D, Usheva A, Erat A, Chen JF, Enjyoji K, Linden J, Oukka M, Kuchroo VK, Strom TB, Robson SC (2007) Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J Exp Med 204:1257–1265

    Article  PubMed  CAS  Google Scholar 

  • Dervieux T (2009) Methotrexate pharmacogenomics in rheumatoid arthritis: introducing false-positive report probability. Rheumatology (Oxford) 48:597–598

    Article  CAS  Google Scholar 

  • Dervieux T, Furst D, Lein DO, Capps R, Smith K, Walsh M, Kremer J (2004) Polyglutamation of methotrexate with common polymorphisms in reduced folate carrier, aminoimidazole carboxamide ribonucleotide transformylase, and thymidylate synthase are associated with methotrexate effects in rheumatoid arthritis. Arthritis Rheum 50:2766–2774

    Article  PubMed  CAS  Google Scholar 

  • Dervieux T, Furst D, Lein DO, Capps R, Smith K, Caldwell J, Kremer J (2005) Pharmacogenetic and metabolite measurements are associated with clinical status in patients with rheumatoid arthritis treated with methotrexate: results of a multicentred cross sectional observational study. Ann Rheum Dis 64:1180–1185

    Article  PubMed  CAS  Google Scholar 

  • Dervieux T, Wessels JA, van der Straaten T, Penrod N, Moore JH, Guchelaar HJ, Kremer JM (2009) Gene–gene interactions in folate and adenosine biosynthesis pathways affect methotrexate efficacy and tolerability in rheumatoid arthritis. Pharmacogenet Genomics

    Google Scholar 

  • Eltzschig HK, Macmanus CF, Colgan SP (2008) Neutrophils as sources of extracellular nucleotides: functional consequences at the vascular interface. Trends Cardiovasc Med 18:103–107

    Article  PubMed  CAS  Google Scholar 

  • Endres S, Fulle HJ, Sinha B, Stoll D, Dinarello CA, Gerzer R, Weber PC (1991) Cyclic nucleotides differentially regulate the synthesis of tumour necrosis factor-alpha and interleukin-1 beta by human mononuclear cells. Immunology 72:56–60

    PubMed  CAS  Google Scholar 

  • Erdmann AA, Gao ZG, Jung U, Foley J, Borenstein T, Jacobson KA, Fowler DH (2005) Activation of Th1 and Tc1 cell adenosine A2A receptors directly inhibits IL-2 secretion in vitro and IL-2-driven expansion in vivo. Blood 105:4707–4714

    Article  PubMed  CAS  Google Scholar 

  • Feoktistov I, Biaggioni I (1995) Adenosine A2b receptors evoke interleukin-8 secretion in human mast cells. An enprofylline-sensitive mechanism with implications for asthma. J Clin Invest 96:1979–1986

    Article  PubMed  CAS  Google Scholar 

  • Feoktistov I, Biaggioni I (1997) Adenosine A2B receptors. Pharmacol Rev 49:381–402

    PubMed  CAS  Google Scholar 

  • Fozard JR, Hannon JP (1999) Adenosine receptor ligands: potential as therapeutic agents in asthma and COPD. Pulm Pharmacol Ther 12:111–114

    Article  PubMed  CAS  Google Scholar 

  • Fozard JR, Pfannkuche HJ, Schuurman HJ (1996) Mast cell degranulation following adenosine A3 receptor activation in rats. Eur J Pharmacol 298:293–297

    Article  PubMed  CAS  Google Scholar 

  • Fredholm BB (2007) Adenosine, an endogenous distress signal, modulates tissue damage and repair. Cell Death Differ 14:1315–1323

    Article  PubMed  CAS  Google Scholar 

  • Fredholm BB, Sandberg G (1983) Inhibition by xanthine derivatives of adenosine receptor-stimulated cyclic adenosine 3′,5′-monophosphate accumulation in rat and guinea-pig thymocytes. Br J Pharmacol 80:639–644

    Article  PubMed  CAS  Google Scholar 

  • Fredholm BB, Zhang Y, van der Ploeg I (1996) Adenosine A2A receptors mediate the inhibitory effect of adenosine on formyl-Met-Leu-Phe-stimulated respiratory burst in neutrophil leucocytes. Naunyn Schmiedebergs Arch Pharmacol 354:262–267

    Article  PubMed  CAS  Google Scholar 

  • Fredholm BB, Battig K, Holmen J, Nehlig A, Zvartau EE (1999) Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev 51:83–133

    PubMed  CAS  Google Scholar 

  • Fredholm BB, Irenius E, Kull B, Schulte G (2001) Comparison of the potency of adenosine as an agonist at human adenosine receptors expressed in Chinese hamster ovary cells. Biochem Pharmacol 61:443–448

    Article  PubMed  CAS  Google Scholar 

  • Fredholm BB, Chern Y, Franco R, Sitkovsky M (2007) Aspects of the general biology of adenosine A2A signaling. Prog Neurobiol 83:263–276

    Article  PubMed  CAS  Google Scholar 

  • Gessi S, Merighi S, Varani K, Leung E, Mac Lennan S, Borea PA (2008) The A3 adenosine receptor: an enigmatic player in cell biology. Pharmacol Ther 117:123–140

    Article  PubMed  CAS  Google Scholar 

  • Hasko G, Szabo C, Nemeth ZH, Salzman AL, Vizi ES (1998) Suppression of IL-12 production by phosphodiesterase inhibition in murine endotoxemia is IL-10 independent. Eur J Immunol 28:468–472

    Article  PubMed  CAS  Google Scholar 

  • Hasko G, Pacher P, Deitch EA, Vizi ES (2007) Shaping of monocyte and macrophage function by adenosine receptors. Pharmacol Ther 113:264–275

    Article  PubMed  CAS  Google Scholar 

  • Hasko G, Linden J, Cronstein B, Pacher P (2008) Adenosine receptors: therapeutic aspects for inflammatory and immune diseases. Nat Rev Drug Discov 7:759–770

    Article  PubMed  CAS  Google Scholar 

  • Hasko G, Csoka B, Nemeth ZH, Vizi ES, Pacher P (2009) A(2B) adenosine receptors in immunity and inflammation. Trends Immunol 30:263–270

    Article  PubMed  CAS  Google Scholar 

  • Hichami A, Boichot E, Germain N, Legrand A, Moodley I, Lagente V (1995) Involvement of cyclic AMP in the effects of phosphodiesterase IV inhibitors on arachidonate release from mononuclear cells. Eur J Pharmacol 291:91–97

    Article  PubMed  CAS  Google Scholar 

  • Holgate ST (2005) The Quintiles Prize Lecture 2004. The identification of the adenosine A2B receptor as a novel therapeutic target in asthma. Br J Pharmacol 145:1009–1015

    Article  PubMed  CAS  Google Scholar 

  • Horrigan LA, Kelly JP, Connor TJ (2004) Caffeine suppresses TNF-alpha production via activation of the cyclic AMP/protein kinase A pathway. Int Immunopharmacol 4:1409–1417

    Article  PubMed  CAS  Google Scholar 

  • Horrigan LA, Kelly JP, Connor TJ (2006) Immunomodulatory effects of caffeine: friend or foe? Pharmacol Ther 111:877–892

    Article  PubMed  CAS  Google Scholar 

  • Inouye LK, Wharton W (1986) The relationship between intracellular cyclic AMP concentrations and the in vitro growth of macrophages. J Leukoc Biol 39:657–670

    PubMed  CAS  Google Scholar 

  • Ito K, Lim S, Caramori G, Cosio B, Chung KF, Adcock IM, Barnes PJ (2002) A molecular mechanism of action of theophylline: induction of histone deacetylase activity to decrease inflammatory gene expression. Proc Natl Acad Sci USA 99:8921–8926

    Article  PubMed  CAS  Google Scholar 

  • Jin X, Shepherd RK, Duling BR, Linden J (1997) Inosine binds to A3 adenosine receptors and stimulates mast cell degranulation. J Clin Invest 100:2849–2857

    Article  PubMed  CAS  Google Scholar 

  • Khoa ND, Montesinos MC, Reiss AB, Delano D, Awadallah N, Cronstein BN (2001) Inflammatory cytokines regulate function and expression of adenosine A(2A) receptors in human monocytic THP-1 cells. J Immunol 167:4026–4032

    PubMed  CAS  Google Scholar 

  • Meiners I, Hauschildt S, Nieber K, Munch G (2004) Pentoxyphylline and propentophylline are inhibitors of TNF-alpha release in monocytes activated by advanced glycation endproducts. J Neural Transm 111:441–447

    Article  PubMed  CAS  Google Scholar 

  • Montesinos C, Yap JS, Desai A, Posadas I, McCrary CT, Cronstein BN (2000) Reversal of the antiinflammatory effects of methotrexate by the nonselective adenosine receptor antagonists theophylline and caffeine. Evidence that the antiinflammatory effects of methotrexate are mediated via multiple adenosine receptors in rat adjuvant arthritis. Arthritis Rheum 43:656–663

    Article  PubMed  CAS  Google Scholar 

  • Mustafa SJ, Nadeem A, Fan M, Zhong H, Belardinelli L, Zeng D (2007) Effect of a specific and selective A(2B) adenosine receptor antagonist on adenosine agonist AMP and allergen-induced airway responsiveness and cellular influx in a mouse model of asthma. J Pharmacol Exp Ther 320:1246–1251

    Article  PubMed  CAS  Google Scholar 

  • Nemeth ZH, Hasko G, Szabo C, Vizi ES (1997) Amrinone and theophylline differentially regulate cytokine and nitric oxide production in endotoxemic mice. Shock 7:371–375

    Article  PubMed  CAS  Google Scholar 

  • Nemeth ZH, Leibovich SJ, Deitch EA, Sperlagh B, Virag L, Vizi ES, Szabo C, Hasko G (2003) Adenosine stimulates CREB activation in macrophages via a p38 MAPK-mediated mechanism. Biochem Biophys Res Commun 312:883–888

    Article  PubMed  CAS  Google Scholar 

  • Nesher G, Mates M, Zevin S (2003) Effect of caffeine consumption on efficacy of methotrexate in rheumatoid arthritis. Arthritis Rheum 48:571–572

    Article  PubMed  Google Scholar 

  • Ohta A, Sitkovsky M (2001) Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage. Nature 414:916–920

    Article  PubMed  CAS  Google Scholar 

  • Ohta A, Lukashev D, Jackson EK, Fredholm BB, Sitkovsky M (2007) 1, 3, 7-trimethylxanthine (caffeine) may exacerbate acute inflammatory liver injury by weakening the physiological immunosuppressive mechanism. J Immunol 179:7431–7438

    PubMed  CAS  Google Scholar 

  • Polosa R, Holgate ST (2006) Adenosine receptors as promising therapeutic targets for drug development in chronic airway inflammation. Curr Drug Targets 7:699–706

    Article  PubMed  CAS  Google Scholar 

  • Revan S, Montesinos MC, Naime D, Landau S, Cronstein BN (1996) Adenosine A2 receptor occupancy regulates stimulated neutrophil function via activation of a serine/threonine protein phosphatase. J Biol Chem 271:17114–17118

    Article  PubMed  CAS  Google Scholar 

  • Ryzhov S, Goldstein AE, Biaggioni I, Feoktistov I (2006) Cross-talk between G(s)- and G(q)-coupled pathways in regulation of interleukin-4 by A(2B) adenosine receptors in human mast cells. Mol Pharmacol 70:727–735

    Article  PubMed  CAS  Google Scholar 

  • Sawynok J, Yaksh TL (1993) Caffeine as an analgesic adjuvant: a review of pharmacology and mechanisms of action. Pharmacol Rev 45:43–85

    PubMed  CAS  Google Scholar 

  • Silke C, Murphy MS, Buckley T, Busteed S, Molloy MG, Phelan M (2001) The effects of caffeine ingestion on the efficacy of methotrexate. Rheumatology (Oxford) 40(Suppl 1):34

    Google Scholar 

  • Sitkovsky MV (2009) T regulatory cells: hypoxia-adenosinergic suppression and re-direction of the immune response. Trends Immunol 30(3):102–108

    Article  PubMed  CAS  Google Scholar 

  • Sullivan GW, Luong LS, Carper HT, Barnes RC, Mandell GL (1995) Methylxanthines with adenosine alter TNF alpha-primed PMN activation. Immunopharmacology 31:19–29

    Article  PubMed  CAS  Google Scholar 

  • van Calker D, Muller M, Hamprecht B (1979) Adenosine regulates via two different types of receptors, the accumulation of cyclic AMP in cultured brain cells. J Neurochem 33:999–1005

    Article  PubMed  Google Scholar 

  • Volonte C, D’Ambrosi N (2009) Membrane compartments and purinergic signalling: the purinome, a complex interplay among ligands, degrading enzymes, receptors and transporters. FEBS J 276:318–329

    Article  PubMed  CAS  Google Scholar 

  • Walker BA, Rocchini C, Boone RH, Ip S, Jacobson MA (1997) Adenosine A2a receptor activation delays apoptosis in human neutrophils. J Immunol 158:2926–2931

    PubMed  CAS  Google Scholar 

  • Weisman MH, Furst DE, Park GS, Kremer JM, Smith KM, Wallace DJ, Caldwell JR, Dervieux T (2006) Risk genotypes in folate-dependent enzymes and their association with methotrexate-related side effects in rheumatoid arthritis. Arthritis Rheum 54:607–612

    Article  PubMed  CAS  Google Scholar 

  • Wessels JA, de Vries-Bouwstra JK, Heijmans BT, Slagboom PE, Goekoop-Ruiterman YP, Allaart CF, Kerstens PJ, van Zeben D, Breedveld FC, Dijkmans BA, Huizinga TW, Guchelaar HJ (2006a) Efficacy and toxicity of methotrexate in early rheumatoid arthritis are associated with single-nucleotide polymorphisms in genes coding for folate pathway enzymes. Arthritis Rheum 54:1087–1095

    Article  PubMed  CAS  Google Scholar 

  • Wessels JA, Kooloos WM, Jonge RD, De Vries-Bouwstra JK, Allaart CF, Linssen A, Collee G, Sonnaville PD, Lindemans J, Huizinga TW, Guchelaar HJ (2006b) Relationship between genetic variants in the adenosine pathway and outcome of methotrexate treatment in patients with recent-onset rheumatoid arthritis. Arthritis Rheum 54:2830–2839

    Article  PubMed  CAS  Google Scholar 

  • Yasui K, Hu B, Nakazawa T, Agematsu K, Komiyama A (1997) Theophylline accelerates human granulocyte apoptosis not via phosphodiesterase inhibition. J Clin Invest 100:1677–1684

    Article  PubMed  CAS  Google Scholar 

  • Yasui K, Agematsu K, Shinozaki K, Hokibara S, Nagumo H, Nakazawa T, Komiyama A (2000a) Theophylline induces neutrophil apoptosis through adenosine A2A receptor antagonism. J Leukoc Biol 67:529–535

    PubMed  CAS  Google Scholar 

  • Yasui K, Agematsu K, Shinozaki K, Hokibara S, Nagumo H, Yamada S, Kobayashi N, Komiyama A (2000b) Effects of theophylline on human eosinophil functions: comparative study with neutrophil functions. J Leukoc Biol 68:194–200

    PubMed  CAS  Google Scholar 

  • Yegutkin GG (2008) Nucleotide- and nucleoside-converting ectoenzymes: important modulators of purinergic signalling cascade. Biochim Biophys Acta 1783(5):673–694

    Article  PubMed  CAS  Google Scholar 

  • Zhong H, Shlykov SG, Molina JG, Sanborn BM, Jacobson MA, Tilley SL, Blackburn MR (2003) Activation of murine lung mast cells by the adenosine A3 receptor. J Immunol 171:338–345

    PubMed  CAS  Google Scholar 

  • Zhong H, Belardinelli L, Maa T, Feoktistov I, Biaggioni I, Zeng D (2004) A(2B) adenosine receptors increase cytokine release by bronchial smooth muscle cells. Am J Respir Cell Mol Biol 30:118–125

    Article  PubMed  CAS  Google Scholar 

  • Zhong H, Belardinelli L, Maa T, Zeng D (2005) Synergy between A2B adenosine receptors and hypoxia in activating human lung fibroblasts. Am J Respir Cell Mol Biol 32:2–8

    Article  PubMed  CAS  Google Scholar 

  • Zhong H, Wu Y, Belardinelli L, Zeng D (2006) A2B adenosine receptors induce IL-19 from bronchial epithelial cells, resulting in TNF-alpha increase. Am J Respir Cell Mol Biol 35:587–592

    Article  PubMed  CAS  Google Scholar 

  • Zhou QY, Li C, Olah ME, Johnson RA, Stiles GL, Civelli O (1992) Molecular cloning and characterization of an adenosine receptor: the A3 adenosine receptor. Proc Natl Acad Sci USA 89:7432–7436

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Haskó, G., Cronstein, B. (2011). Methylxanthines and Inflammatory Cells. In: Methylxanthines. Handbook of Experimental Pharmacology, vol 200. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13443-2_18

Download citation

Publish with us

Policies and ethics