Skip to main content

Posttranslational Modifications of Plasma Membrane Proteins and Their Implications for Plant Growth and Development

  • Chapter
  • First Online:
Book cover The Plant Plasma Membrane

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 19))

Abstract

Posttranslational modifications of plasma membrane (PM) proteins are essential for a variety of processes that take place at the interface between cells and their environment. A plethora of PM protein modifications have been identified, several of which have been characterized for their role in the regulation of PM-protein fate. In this chapter, we will focus on a number of selected protein modifications that have been shown to affect protein targeting. Both reversible and irreversible covalent protein modifications appear to affect distinct steps in protein trafficking, and regulate protein association with hydrophobic environments, thereby defining the impact of those proteins on a large variety of plant growth responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abas L, Benjamins R, Malenica N, Paciorek T, Wisniewska J, Moulinier-Anzola JC, Sieberer T, Friml J, Luschnig C (2006) Intracellular trafficking and proteolysis of the Arabidopsis auxin-efflux facilitator PIN2 are involved in root gravitropism. Nat Cell Biol 8:249–256

    Article  PubMed  CAS  Google Scholar 

  • Albrecht V, Ritz O, Linder S, Harter K, Kudla J (2001) The NAF domain defines a novel protein–protein interaction module conserved in Ca2+-regulated kinases. EMBO J 20:1051–1063

    Article  PubMed  CAS  Google Scholar 

  • Albrecht V, Weinl S, Blazevic D, D’angelo C, Batistic O, Kolukisaoglu U, Bock R, Schulz B, Harter K, Kudla J (2003) The calcium sensor CBL1 integrates plant responses to abiotic stresses. Plant J 36:457–470

    Article  PubMed  CAS  Google Scholar 

  • Apodaca G, Mostov K (1993) Transcytosis of placental alkaline phosphatase-polymeric immunoglobulin receptor fusion proteins is regulated by mutations of Ser664. J Biol Chem 268:23712–23719

    PubMed  CAS  Google Scholar 

  • Babu P, Deschenes R, Robinson L (2004) Akr1p-dependent palmitoylation of Yck2p yeast casein kinase 1 is necessary and sufficient for plasma membrane targeting. J Biol Chem 279:27138–27147

    Article  PubMed  CAS  Google Scholar 

  • Baskin TI (2001) On the alignment of cellulose microfibrils by cortical microtubules: a review and a model. Protoplasma 215:150–171

    Article  PubMed  CAS  Google Scholar 

  • Batistic O, Sorek N, Schultke S, Yalovsky S, Kudla J (2008) Dual fatty acyl modification determines the localization and plasma membrane targeting of CBL/CIPK Ca2+ signaling complexes in Arabidopsis. Plant Cell 20:1346–1362

    Article  PubMed  CAS  Google Scholar 

  • Benjamins R, Ampudia C, Hooykaas P, Offringa R (2003) PINOID-mediated signaling involves calcium-binding proteins. Plant Physiol 132:1623–1630

    Article  PubMed  CAS  Google Scholar 

  • Benjamins R, Malenica N, Luschnig C (2005) Regulating the regulator: the control of auxin transport. Bioessays 27:1246–1255

    Article  PubMed  CAS  Google Scholar 

  • Benting JH, Rietveld AG, Simons K (1999) N-Glycans mediate the apical sorting of a GPI-anchored, raft-associated protein in Madin-Darby canine kidney cells. J Cell Biol 146:313–320

    Article  PubMed  CAS  Google Scholar 

  • Bhatnagar R, Gordon J (1997) Understanding covalent modifications of proteins by lipids: where cell biology and biophysics mingle. Trends Cell Biol 7:14–20

    Article  PubMed  CAS  Google Scholar 

  • Boisson B, Giglione C, Meinnel T (2003) Unexpected protein families including cell defense components feature in the N-myristoylome of a higher eukaryote. J Biol Chem 278:43418–43429

    Article  PubMed  CAS  Google Scholar 

  • Bonetta D, Bayliss P, Sun S, Sage T, Mccourt P (2000) Farnesylation is involved in meristem organization in Arabidopsis. Planta 211:182–190

    Article  PubMed  CAS  Google Scholar 

  • Borner GH, Sherrier DJ, Stevens TJ, Arkin IT, Dupree P (2002) Prediction of glycosylphosphatidylinositol-anchored proteins in arabidopsis. A genomic analysis. Plant Physiol 129:486–499

    Article  PubMed  CAS  Google Scholar 

  • Borner GH, Lilley KS, Stevens TJ, Dupree P (2003) Identification of glycosylphosphatidylinositol-anchored proteins in arabidopsis. A proteomic and genomic analysis. Plant Physiol 132:568–577

    Article  PubMed  CAS  Google Scholar 

  • Bracha K, Lavy M, Yalovsky S (2002) The Arabidopsis AtSTE24 is a CAAX protease with broad substrate specificity. J Biol Chem 277:29856–29864

    Article  PubMed  CAS  Google Scholar 

  • Brady SM, Song S, Dhugga KS, Rafalski JA, Benfey PN (2007) Combining expression and comparative evolutionary analysis. The COBRA gene family. Plant Physiol 143:172–187

    Article  PubMed  CAS  Google Scholar 

  • Brown DM, Zeef LA, Ellis J, Goodacre R, Turner SR (2005) Identification of novel genes in arabidopsis involved in secondary cell wall formation using expression profiling and reverse genetics. Plant Cell 17:2281–2295

    Article  PubMed  CAS  Google Scholar 

  • Cadinanos J, Schmidt W, Fueyo A, Varela I, Lopez-Otin C, Freije J (2003a) Identification, functional expression and enzymic analysis of two distinct CaaX proteases from Caenorhabditis elegans. Biochem J 370:1047–1054

    Article  PubMed  CAS  Google Scholar 

  • Cadinanos J, Varela I, Mandel D, Schmidt W, Diaz-Perales A, Lopez-Otin C, Freije J (2003b) AtFACE-2, a functional prenylated protein protease from Arabidopsis thaliana related to mammalian Ras-converting enzymes. J Biol Chem 278:42091–42097

    Article  PubMed  CAS  Google Scholar 

  • Caldelari D, Sternberg H, Rodriguez-Concepcion M, Gruissem W, Yalovsky S (2001) Efficient prenylation by a plant geranylgeranyltransferase-I requires a functional CaaL box motif and a proximal polybasic domain. Plant Physiol 126:1416–1429

    Article  PubMed  CAS  Google Scholar 

  • Camp L, Hofmann S (1993) Purification and properties of a palmitoyl-protein thioesterase that cleaves palmitate from H-Ras. J Biol Chem 268:22566–22574

    PubMed  CAS  Google Scholar 

  • Casanova J, Breitfeld P, Ross S, Mostov K (1990) Phosphorylation of the polymeric immunoglobulin receptor required for its efficient transcytosis. Science 248:742–745

    Article  PubMed  CAS  Google Scholar 

  • Coppinger P, Repetti PP, Day B, Dahlbeck D, Mehlert A, Staskawicz BJ (2004) Overexpression of the plasma membrane-localized NDR1 protein results in enhanced bacterial disease resistance in Arabidopsis thaliana. Plant J 40:225–237

    Article  PubMed  CAS  Google Scholar 

  • Crowell D, Sen S, Randall S (1998) Prenylcysteine alpha-carboxyl methyltransferase in suspension-cultured tobacco cells. Plant Physiol 118:115–123

    Article  PubMed  CAS  Google Scholar 

  • Cunnac S, Wilson A, Nuwer J, Kirik A, Baranage G, Mudgett M (2007) A conserved carboxylesterase is a SUPPRESSOR OF AVRBST-ELICITED RESISTANCE in Arabidopsis. Plant Cell 19:688–705

    Article  PubMed  CAS  Google Scholar 

  • Cutler S, Ghassemian M, Bonetta D, Cooney S, Mccourt P (1996) A protein farnesyl transferase involved in abscisic acid signal transduction in Arabidopsis. Science 273:1239–1241

    Article  PubMed  CAS  Google Scholar 

  • Day B, Dahlbeck D, Staskawicz BJ (2006) NDR1 interaction with RIN4 mediates the differential activation of multiple disease resistance pathways in Arabidopsis. Plant Cell 18:2782–2791

    Article  PubMed  CAS  Google Scholar 

  • Duncan J, Gilman A (1998) A cytoplasmic acyl-protein thioesterase that removes palmitate from G protein alpha subunits and p21(RAS). J Biol Chem 273:15830–15837

    Article  PubMed  CAS  Google Scholar 

  • Eisenhaber B, Wildpaner M, Schultz CJ, Borner GH, Dupree P, Eisenhaber F (2003) Glycosylphosphatidylinositol lipid anchoring of plant proteins. Sensitive prediction from sequence- and genome-wide studies for arabidopsis and rice. Plant Physiol 133:1691–1701

    Article  PubMed  CAS  Google Scholar 

  • Elortza F, Nuhse TS, Foster LJ, Stensballe A, Peck SC, Jensen ON (2003) Proteomic analysis of glycosylphosphatidylinositol-anchored membrane proteins. Mol Cell Proteomics 2:1261–1270

    Article  PubMed  CAS  Google Scholar 

  • Elortza F, Mohammed S, Bunkenborg J, Foster LJ, Nuhse TS, Brodbeck U, Peck SC, Jensen ON (2006) Modification-specific proteomics of plasma membrane proteins: identification and characterization of glycosylphosphatidylinositol-anchored proteins released upon phospholipase D treatment. J Proteome Res 5:935–943

    Article  PubMed  CAS  Google Scholar 

  • Friml J, Benkova E, Blilou I, Wisniewska J, Hamann T, Ljung K, Woody S, Sandberg G, Scheres B, Jürgens G, Palme K (2002) AtPIN4 mediates sink-driven auxin gradients and root patterning in Arabidopsis. Cell 108:661–673

    Article  PubMed  CAS  Google Scholar 

  • Friml J, Vieten A, Sauer M, Weijers D, Schwarz H, Hamann T, Offringa R, Jürgens G (2003) Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature 426:147–153

    Article  PubMed  CAS  Google Scholar 

  • Friml J, Yang X, Michniewicz M, Weijers D, Quint A, Tietz O, Benjamins R, Ouwerkerk P, Ljung K, Sandberg G, Hooykaas P, Palme K, Offringa R (2004) A PINOID-dependent binary switch in apical-basal PIN polar targeting directs auxin efflux. Science 306:862–865

    Article  PubMed  CAS  Google Scholar 

  • Galichet A, Gruissem W (2003) Protein farnesylation in plants – conserved mechanisms but different targets. Curr Opin Plant Biol 6:530–535

    Article  PubMed  CAS  Google Scholar 

  • Galvan-Ampudia CS, Offringa R (2007) Plant evolution: AGC kinases tell the auxin tale. Trends Plant Sci 12:541–547

    Article  PubMed  CAS  Google Scholar 

  • Gälweiler L, Guan C, Müller A, Wisman E, Mendgen K, Yephremov A, Palme K (1998) Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science 282: 2226–2230

    Article  PubMed  CAS  Google Scholar 

  • Gillmor CS, Lukowitz W, Brininstool G, Sedbrook JC, Hamann T, Poindexter P, Somerville C (2005) Glycosylphosphatidylinositol-anchored proteins are required for cell wall synthesis and morphogenesis in arabidopsis. Plant Cell 17:1128–1140

    Article  PubMed  CAS  Google Scholar 

  • Goritschnig S, Weihmann T, Zhang Y, Fobert P, Mccourt P, Li X (2008) A novel role for protein farnesylation in plant innate immunity. Plant Physiol 148:348–357

    Article  PubMed  CAS  Google Scholar 

  • Haglund K, Dikic I (2005) Ubiquitylation and cell signaling. EMBO J 24:3353–3359

    Article  PubMed  CAS  Google Scholar 

  • Hauser MT, Morikami A, Benfey PN (1995) Conditional root expansion mutants of Arabidopsis. Development 121:1237–1252

    PubMed  CAS  Google Scholar 

  • Hemsley P, Grierson C (2008) Multiple roles for protein palmitoylation in plants. Trends Plant Sci 13:295–302

    Article  PubMed  CAS  Google Scholar 

  • Hemsley P, Kemp A, Grierson C (2005) The TIP GROWTH DEFECTIVE1 S-acyl transferase regulates plant cell growth in Arabidopsis. Plant Cell 17:2554–2563

    Article  PubMed  CAS  Google Scholar 

  • Hicke L, Dunn R (2003) Regulation of membrane protein transport by ubiquitin and ubiquitin-binding proteins. Annu Rev Cell Dev Biol 19:141–172

    Article  PubMed  CAS  Google Scholar 

  • Hicke L, Zanolari B, Riezman H (1998) Cytoplasmic tail phosphorylation of the alpha-factor receptor is required for its ubiquitination and internalization. J Cell Biol 141:349–358

    Article  PubMed  CAS  Google Scholar 

  • Hochholdinger F, Wen TJ, Zimmermann R, Chimot-Marolle P, da Costa e Silva O, Bruce W, Lamkey KR, Wienand U, Schnable PS (2008) The maize (Zea mays L.) roothairless 3 gene encodes a putative GPI-anchored, monocot-specific, COBRA-like protein that significantly affects grain yield. Plant J 54:888–898

    Article  PubMed  CAS  Google Scholar 

  • Ishitani M, Liu J, Halfter U, Kim C, Shi W, Zhu J (2000) SOS3 function in plant salt tolerance requires N-myristoylation and calcium binding. Plant Cell 12:1667–1678

    PubMed  CAS  Google Scholar 

  • Jacobson K, Mouritsen OG, Anderson RG (2007) Lipid rafts: at a crossroad between cell biology and physics. Nat Cell Biol 9:7–14

    Article  PubMed  CAS  Google Scholar 

  • Johnson C, Chary S, Chernoff E, Zeng Q, Running M, Crowell D (2005) Protein geranylgeranyltransferase I is involved in specific aspects of abscisic acid and auxin signaling in Arabidopsis. Plant Physiol 139:722–733

    Article  PubMed  CAS  Google Scholar 

  • Jones MA, Raymond MJ, Smirnoff N (2006) Analysis of the root-hair morphogenesis transcriptome reveals the molecular identity of six genes with roles in root-hair development in arabidopsis. Plant J 45:83–100

    Article  PubMed  CAS  Google Scholar 

  • Jürgens G, Geldner N (2007) The high road and the low road: trafficking choices in plants. Cell 130:977–979

    Article  PubMed  CAS  Google Scholar 

  • Kim B, Waadt R, Cheong Y, Pandey G, Dominguez-Solis JR, Schultke S, Lee S, Kudla J, Luan S (2007) The calcium sensor CBL10 mediates salt tolerance by regulating ion homeostasis in Arabidopsis. Plant J 52:473–484

    Article  PubMed  CAS  Google Scholar 

  • Kleine-Vehn J, Friml J (2008) Polar targeting and endocytic recycling in auxin-dependent plant development. Annu Rev Cell Dev Biol 24:447–473

    Article  PubMed  CAS  Google Scholar 

  • Kolukisaoglu U, Weinl S, Blazevic D, Batistic O, Kudla J (2004) Calcium sensors and their interacting protein kinases: genomics of the Arabidopsis and rice CBL-CIPK signaling networks. Plant Physiol 134:43–58

    Article  PubMed  CAS  Google Scholar 

  • Lalanne E, Honys D, Johnson A, Borner GH, Lilley KS, Dupree P, Grossniklaus U, Twell D (2004) SETH1 and SETH2, two components of the glycosylphosphatidylinositol anchor biosynthetic pathway, are required for pollen germination and tube growth in arabidopsis. Plant Cell 16:229–240

    Article  PubMed  CAS  Google Scholar 

  • Lamport DTA, Kieliszewski MJ, Showalter AM (2006) Salt stress upregulates periplasmic arabinogalactan proteins: using salt stress to analyse AGP function. New Phytol 169:479–492

    Article  PubMed  CAS  Google Scholar 

  • Lemichez E, Wu Y, Sanchez J, Mettouchi A, Mathur J, Chua N (2001) Inactivation of AtRac1 by abscisic acid is essential for stomatal closure. Genes Dev 15:1808–1816

    Article  PubMed  CAS  Google Scholar 

  • Loraine A, Yalovsky S, Fabry S, Gruissem W (1996) Tomato Rab1A homologs as molecular tools for studying Rab geranylgeranyl transferase in plant cells. Plant Physiol 110:1337–1347

    Article  PubMed  CAS  Google Scholar 

  • Magee T, Seabra M (2005) Fatty acylation and prenylation of proteins: what’s hot in fat. Curr Opin Cell Biol 17:190–196

    Article  PubMed  CAS  Google Scholar 

  • Maurer-Stroh S, Eisenhaber B, Eisenhaber F (2002a) N-terminal N-myristoylation of proteins: refinement of the sequence motif and its taxon-specific differences. J Mol Biol 317:523–540

    Article  PubMed  CAS  Google Scholar 

  • Maurer-Stroh S, Eisenhaber B, Eisenhaber F (2002b) N-terminal N-myristoylation of proteins: prediction of substrate proteins from amino acid sequence. J Mol Biol 317:541–557

    Article  PubMed  CAS  Google Scholar 

  • Maurer-Stroh S, Washietl S, Eisenhaber F (2003) Protein prenyltransferases. Genome Biol 4:212

    Article  PubMed  Google Scholar 

  • Maurer-Stroh S, Koranda M, Benetka W, Schneider G, Sirota F, Eisenhaber F (2007) Towards complete sets of farnesylated and geranylgeranylated proteins. PLoS Comput Biol 3:e66

    Article  PubMed  CAS  Google Scholar 

  • McCabe PF, Valentine TA, Forsberg LS, Pennell RI (1997) Soluble signals from cells identified at the cell wall establish a developmental pathway in carrot. Plant Cell 9:2225–2241

    PubMed  CAS  Google Scholar 

  • Michniewicz M, Zago M, Abas L, Weijers D, Schweighofer A, Meskiene I, Heisler M, Ohno C, Zhang J, Huang F, Schwab R, Weigel D, Meyerowitz E, Luschnig C, Offringa R, Friml J (2007) Antagonistic regulation of PIN phosphorylation by PP2A and PINOID directs auxin flux. Cell 130:1044–1056

    Article  PubMed  CAS  Google Scholar 

  • Molendijk A, Bischoff F, Rajendrakumar C, Friml J, Braun M, Gilroy S, Palme K (2001) Arabidopsis thaliana Rop GTPases are localized to tips of root hairs and control polar growth. EMBO J 20:2779–2788

    Article  PubMed  CAS  Google Scholar 

  • Motose H, Sugiyama M, Fukuda H (2004) A proteoglycan mediates inductive interaction during plant vascular development. Nature 429:873–878

    Article  PubMed  CAS  Google Scholar 

  • Müller A, Guan C, Galweiler L, Tanzler P, Huijser P, Marchant A, Parry G, Bennett M, Wisman E, Palme K (1998) AtPIN2 defines a locus of Arabidopsis for root gravitropism control. EMBO J 17:6903–6911

    Article  PubMed  Google Scholar 

  • Murphy AS, Hoogner KR, Peer WA, Taiz L (2002) Identification, purification, and molecular cloning of N-1-naphthylphthalmic acid-binding plasma membrane-associated aminopeptidases from Arabidopsis. Plant Physiol 128:935–950

    Article  PubMed  CAS  Google Scholar 

  • Nguema-Ona E, Bannigan A, Chevalier L, Baskin TI, Driouich A (2007) Disruption of arabinogalactan proteins disorganizes cortical microtubules in the root of Arabidopsis thaliana. Plant J 52:240–251

    Article  PubMed  CAS  Google Scholar 

  • Nothnagel EA (1997) Proteoglycans and related components in plant cells. Int Rev Cytol 174:195–291

    Article  PubMed  CAS  Google Scholar 

  • Orlean P, Menon AK (2007) Thematic review series: lipid posttranslational modifications. GPI anchoring of protein in yeast and mammalian cells, or: how we learned to stop worrying and love glycophospholipids. J Lipid Res 48:993–1011

    Article  PubMed  CAS  Google Scholar 

  • Oxley D, Bacic A (1999) Structure of the glycosylphosphatidylinositol anchor of an arabinogalactan protein from Pyrus communis suspension-cultured cells. Proc Natl Acad Sci USA 96:14246–14251

    Article  PubMed  CAS  Google Scholar 

  • Paladino S, Sarnataro D, Pillich R, Tivodar S, Nitsch L, Zurzolo C (2004) Protein oligomerization modulates raft partitioning and apical sorting of GPI-anchored proteins. J Cell Biol 167:699–709

    Article  PubMed  CAS  Google Scholar 

  • Paulick MG, Bertozzi CR (2008) The glycosylphosphatidylinositol anchor: a complex membrane-anchoring structure for proteins. Biochemistry 17:17

    Google Scholar 

  • Pei Z, Ghassemian M, Kwak C, Mccourt P, Schroeder J (1998) Role of farnesyltransferase in ABA regulation of guard cell anion channels and plant water loss. Science 282:287–290

    Article  PubMed  CAS  Google Scholar 

  • Petrasek J, Mravec J, Bouchard R, Blakeslee J, Abas M, Seifertova D, Wisniewska J, Tadele Z, Kubes M, Covanova M, Dhonukshe P, Skupa P, Benkova E, Perry L, Krecek P, Lee O, Fink G, Geisler M, Murphy A, Luschnig C, Zazimalova E, Friml J (2006) PIN proteins perform a rate-limiting function in cellular auxin efflux. Science 312:914–918

    Article  PubMed  CAS  Google Scholar 

  • Pierre M, Traverso J, Boisson B, Domenichini S, Bouchez D, Giglione C, Meinnel T (2007) N-myristoylation regulates the SnRK1 pathway in Arabidopsis. Plant Cell 19:2804–2821

    Article  PubMed  CAS  Google Scholar 

  • Polge C, Thomas M (2007) SNF1/AMPK/SnRK1 kinases, global regulators at the heart of energy control. Trends Plant Sci 12:20–28

    Article  PubMed  CAS  Google Scholar 

  • Potter BA, Hughey RP, Weisz OA (2006) Role of N- and O-glycans in polarized biosynthetic sorting. Am J Physiol Cell Physiol 290:C1–C10

    Article  PubMed  CAS  Google Scholar 

  • Qi Q, Rajala R, Anderson W, Jiang C, Rozwadowski K, Selvaraj G, Sharma R, Datla R (2000) Molecular cloning, genomic organization, and biochemical characterization of myristoyl-CoA:protein N-myristoyltransferase from Arabidopsis thaliana. J Biol Chem 275:9673–9683

    Article  PubMed  CAS  Google Scholar 

  • Qian D, Zhou D, Ju R, Cramer C, Yang Z (1996) Protein farnesyltransferase in plants: molecular characterization and involvement in cell cycle control. Plant Cell 8:2381–2394

    PubMed  CAS  Google Scholar 

  • Randall S, Marshall M, Crowell D (1993) Protein isoprenylation in suspension-cultured tobacco cells. Plant Cell 5:433–442

    PubMed  CAS  Google Scholar 

  • Resh M (1999) Fatty acylation of proteins: new insights into membrane targeting of myristoylated and palmitoylated proteins. Biochim Biophys Acta 1451:1–16

    Article  PubMed  CAS  Google Scholar 

  • Rocks O, Peyker A, Kahms M, Verveer P, Koerner C, Lumbierres M, Kuhlmann J, Waldmann H, Wittinghofer A, Bastiaens P (2005) An acylation cycle regulates localization and activity of palmitoylated Ras isoforms. Science 307:1746–1752

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Concepcion M, Toledo-Ortiz G, Yalovsky S, Caldelari D, Gruissem W (2000) Carboxyl-methylation of prenylated calmodulin CaM53 is required for efficient plasma membrane targeting of the protein. Plant J 24:775–784

    Article  PubMed  CAS  Google Scholar 

  • Roskoski RJ (2003) Protein prenylation: a pivotal posttranslational process. Biochem Biophys Res Commun 303:1–7

    Article  PubMed  CAS  Google Scholar 

  • Roth A, Feng Y, Chen L, Davis N (2002) The yeast DHHC cysteine-rich domain protein Akr1p is a palmitoyl transferase. J Cell Biol 159:23–28

    Article  PubMed  CAS  Google Scholar 

  • Roudier F, Schindelman G, DeSalle R, Benfey PN (2002) The COBRA family of putative GPI-anchored proteins in Arabidopsis. A new fellowship in expansion. Plant Physiol 130:538–548

    Article  PubMed  CAS  Google Scholar 

  • Roudier F, Fernandez AG, Fujita M, Himmelspach R, Borner GH, Schindelman G, Song S, Baskin TI, Dupree P, Wasteneys GO, Benfey PN (2005) COBRA, an Arabidopsis extracellular glycosyl-phosphatidyl inositol-anchored protein, specifically controls highly anisotropic expansion through its involvement in cellulose microfibril orientation. Plant Cell 17:1749–1763

    Article  PubMed  CAS  Google Scholar 

  • Running M, Lavy M, Sternberg H, Galichet A, Gruissem W, Hake S, Ori N, Yalovsky S (2004) Enlarged meristems and delayed growth in plp mutants result from lack of CaaX prenyltransferases. Proc Natl Acad Sci USA 101:7815–7820

    Article  PubMed  CAS  Google Scholar 

  • Sardar HS, Yang J, Showalter AM (2006) Molecular interactions of arabinogalactan proteins with cortical microtubules and F-actin in Bright Yellow-2 tobacco cultured cells. Plant Physiol 142:1469–1479

    Article  PubMed  CAS  Google Scholar 

  • Sauer M, Balla J, Luschnig C, Wisniewska J, Reinohl V, Friml J, Benkova E (2006) Canalization of auxin flow by Aux/IAA-ARF-dependent feedback regulation of PIN polarity. Genes Dev 20:2902–2911

    Article  PubMed  CAS  Google Scholar 

  • Schafer W, Trueblood C, Yang C, Mayer M, Rosenberg S, Poulter C, Kim S, Rine J (1990) Enzymatic coupling of cholesterol intermediates to a mating pheromone precursor and to the ras protein. Science 249:1133–1139

    Article  PubMed  CAS  Google Scholar 

  • Schiefelbein J, Galway M, Masucci J, Ford S (1993) Pollen tube and root-hair tip growth is disrupted in a mutant of Arabidopsis thaliana. Plant Physiol 103:979–985

    Article  PubMed  CAS  Google Scholar 

  • Schindelman G, Morikami A, Jung J, Baskin TI, Carpita NC, Derbyshire P, McCann MC, Benfey PN (2001) COBRA encodes a putative GPI-anchored protein, which is polarly localized and necessary for oriented cell expansion in Arabidopsis. Genes Dev 15:1115–1127

    Article  PubMed  CAS  Google Scholar 

  • Schuck S, Simons K (2004) Polarized sorting in epithelial cells: raft clustering and the biogenesis of the apical membrane. J Cell Sci 117:5955–5964

    Article  PubMed  CAS  Google Scholar 

  • Schultz CJ, Gilson P, Oxley D, Youl JJ, Bacic A (1998) GPI-anchors an arabinogalactan-proteins: implications for signalling in plants. Trends Plant Sci 3:426–431

    Article  Google Scholar 

  • Schultz CJ, Rumsewicz MP, Johnson KL, Jones BJ, Gaspar YM, Bacic A (2002) Using genomic resources to guide research directions. The arabinogalactan protein gene family as a test case. Plant Physiol 129:1448–1463

    Article  PubMed  CAS  Google Scholar 

  • Sedbrook JC, Carroll KL, Hung KF, Masson PH, Somerville CR (2002) The Arabidopsis SKU5 gene encodes an extracellular glycosyl phosphatidylinositol-anchored glycoprotein involved in directional root growth. Plant Cell 14:1635–1648

    Article  PubMed  CAS  Google Scholar 

  • Seifert GJ, Roberts K (2007) The biology of arabinogalactan-proteins. Annu Rev Plant Biol 58:137–161

    Article  PubMed  CAS  Google Scholar 

  • Shahinian S, Silvius J (1995) Doubly-lipid-modified protein sequence motifs exhibit long-lived anchorage to lipid bilayer membranes. Biochemistry 34:3813–3822

    Article  PubMed  CAS  Google Scholar 

  • Shahollari B, Peskan-Berghofer T, Oelmuller R (2004) Receptor kinases with leucine-rich repeats are enriched in Triton X-100 insoluble plasma membrane microdomains from plants. Physiol Plant 122:397–403

    Article  CAS  Google Scholar 

  • Shenoy S, Mcdonald P, Kohout T, Lefkowitz R (2001) Regulation of receptor fate by ubiquitination of activated beta 2-adrenergic receptor and beta-arrestin. Science 294:1307–1313

    Article  PubMed  CAS  Google Scholar 

  • Shi H, Kim Y, Guo Y, Stevenson B, Zhu JK (2003) The arabidopsis SOS5 locus encodes a putative cell surface adhesion protein and is required for normal cell expansion. Plant Cell 15:19–32

    Article  PubMed  CAS  Google Scholar 

  • Showalter AM (2001) Arabinogalactan-proteins: structure, expression and function. Cell Mol Life Sci 58:1399–1417

    Article  PubMed  CAS  Google Scholar 

  • Sorek N, Poraty L, Sternberg H, Bar E, Lewinsohn E, Yalovsky S (2007) Activation status-coupled transient S acylation determines membrane partitioning of a plant Rho-related GTPase. Mol Cell Biol 27:2144–2154

    Article  PubMed  CAS  Google Scholar 

  • Sun B, Chen L, Cao W, Roth A, Davis N (2004) The yeast casein kinase Yck3p is palmitoylated, then sorted to the vacuolar membrane with AP-3-dependent recognition of a YXXPhi adaptin sorting signal. Mol Biol Cell 15:1397–1406

    Article  PubMed  CAS  Google Scholar 

  • Svetek J, Yadav MP, Nothnagel EA (1999) Presence of a glycosylphosphatidylinositol lipid anchor on rose arabinogalactan proteins. J Biol Chem 274:14724–14733

    Article  PubMed  CAS  Google Scholar 

  • Tam A, Schmidt W, Michaelis S (2001) The multispanning membrane protein Ste24p catalyzes CAAX proteolysis and NH2-terminal processing of the yeast a-factor precursor. J Biol Chem 276:46798–46806

    Article  PubMed  CAS  Google Scholar 

  • Tanimura N, Saitoh S, Kawano S, Kosugi A, Miyake K (2006) Palmitoylation of LAT contributes to its subcellular localization and stability. Biochem Biophys Res Commun 341:1177–1183

    Article  PubMed  CAS  Google Scholar 

  • Thompson GJ, Okuyama H (2000) Lipid-linked proteins of plants. Prog Lipid Res 39:19–39

    Article  PubMed  CAS  Google Scholar 

  • Titapiwatanakun B, Blakeslee JJ, Bandyopadhyay A, Yang H, Mravec J, Sauer M, Cheng Y, Adamec J, Nagashima A, Geisler M, Sakai T, Friml J, Peer WA, Murphy AS (2009) ABCB19/PGP19 stabilises PIN1 in membrane microdomains in Arabidopsis. Plant J 57:27–44

    Article  PubMed  CAS  Google Scholar 

  • Vieten A, Sauer M, Brewer P, Friml J (2007) Molecular and cellular aspects of auxin-transport-mediated development. Trends Plant Sci 12:160–168

    Article  PubMed  CAS  Google Scholar 

  • Vogel JP, Raab TK, Schiff C, Somerville SC (2002) PMR6, a pectate lyase-like gene required for powdery mildew susceptibility in arabidopsis. Plant Cell 14:2095–2106

    Article  PubMed  CAS  Google Scholar 

  • Wasteneys GO, Fujita M (2006) Establishing and maintaining axial growth: wall mechanical properties and the cytoskeleton. J Plant Res 119:5–10

    Article  PubMed  Google Scholar 

  • Wilcox C, Hu J, Olson E (1987) Acylation of proteins with myristic acid occurs cotranslationally. Science 238:1275–1278

    Article  PubMed  CAS  Google Scholar 

  • Wisniewska J, Xu J, Seifertova D, Brewer P, Ruzicka K, Blilou I, Rouquie D, Benkova E, Scheres B, Friml J (2006) Polar PIN localization directs auxin flow in plants. Science 312:883

    Article  PubMed  CAS  Google Scholar 

  • Yalovsky S, Loraine A, Gruissem W (1996) Specific prenylation of tomato rab proteins by geranylgeranyl type-II transferase requires a conserved cysteine-cysteine motif. Plant Physiol 110:1349–1359

    PubMed  CAS  Google Scholar 

  • Yalovsky S, Rodriguez-Concepcion M, Bracha K, Toledo-Ortiz G, Gruissem W (2000) Prenylation of the floral transcription factor APETALA1 modulates its function. Plant Cell 12:1257–1266

    PubMed  CAS  Google Scholar 

  • Yang Z, Cramer C, Watson J (1993) Protein farnesyltransferase in plants. Molecular cloning and expression of a homolog of the beta subunit from the garden pea. Plant Physiol 101:667–674

    Article  PubMed  CAS  Google Scholar 

  • Zegzouti H, Anthony R, Jahchan N, Bogre L, Christensen S (2006) Phosphorylation and activation of PINOID by the phospholipid signaling kinase 3-phosphoinositide-dependent protein kinase 1 (PDK1) in Arabidopsis. Proc Natl Acad Sci USA 103:6404–6409

    Article  PubMed  CAS  Google Scholar 

  • Zhu J, Bressan R, Hasegawa P (1993) Isoprenylation of the plant molecular chaperone ANJ1 facilitates membrane association and function at high temperature. Proc Natl Acad Sci USA 90:8557–8561

    Article  PubMed  CAS  Google Scholar 

  • Ziegelhoffer E, Medrano L, Meyerowitz E (2000) Cloning of the Arabidopsis WIGGUM gene identifies a role for farnesylation in meristem development. Proc Natl Acad Sci USA 97:7633–7638

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Christian Luschnig or Georg J. Seifert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Luschnig, C., Seifert, G.J. (2011). Posttranslational Modifications of Plasma Membrane Proteins and Their Implications for Plant Growth and Development. In: Murphy, A., Schulz, B., Peer, W. (eds) The Plant Plasma Membrane. Plant Cell Monographs, vol 19. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13431-9_5

Download citation

Publish with us

Policies and ethics