Abstract
Many spheroidal normal modes of stars are standing waves resulting from interferences of running waves that travel in opposite directions. Radial modes originate from interferences of acoustic waves that are associated with the degree ℓ equal to zero and travel to-and-fro in the A-cavity with a frequency fitting to the dimensions of the cavity. One gets an idea of the spectrum of the fitting frequencies by treating the eigenvalue problem of the radial oscillations as a Sturm–Liouville eigenvalue problem with singular end points. Moreover, the interferences of acoustic waves and internal gravity waves that are associated with a degree ℓ different from zero and travel to-and-fro in the A-or G-cavity lead, for certain frequencies, to standing waves resulting in non-radial modes. Insight into the types of spectra of eigenfrequencies has been provided by an approach of Cowling. Modes arising from interferences of acoustic waves are called p-modes, and those arising from interferences of internal gravity waves, g +-modes. In stars that contain a convectively unstable region, g −-modes appear, which render the global reactions of the star to the local convective instabilities. Besides the p-, g +-, and g −-modes, non-radial f-modes exist, whose origin is related to surface waves, at least for higher degrees.
Similar content being viewed by others
References
M. Abramowitz, I.A. Stegun (1965) Handbook of Mathematical Functions – with Formulas, Graphs, and Mathematical Tables. Dover Publications, New York
M.L. Aizenman, P. Smeyers (1977) An analysis of the linear, adiabatic oscillations of a star in terms of potential fields. Astrophys. Space Sci. 48, 123–136
H.R. Beyer (1994) On some vector analogues of Sturm-Liouville operators. MPA preprint
H.R. Beyer, B.G. Schmidt (1995) Newtonian stellar oscillations. Astron. Astrophys. 296, 722–726
S. Chandrasekhar, N.R. Lebovitz (1962b) On the oscillations and the stability of rotating gaseous masses. II. The homogeneous, compressible model. Astrophys. J. 136, 1069–1081
S. Chandrasekhar, N.R. Lebovitz (1963) The equilibrium and the stability of the Jeans spheroids. Astrophys. J. 137, 1172–1184
J. Christensen-Dalsgaard, D.J. Mullan (1994) Accurate frequencies of polytropic models. Mon. Not. R. Astron. Soc. 270, 921–935
T.G. Cowling (1941) The non-radial oscillations of polytropic stars. Mon. Not. R. Astron. Soc. 101, 367–375
F.-L. Deubner, D. Gough (1984) Helioseismology: oscillations as a diagnostic of the solar interior. Annu. Rev. Astron. Astrophys. 22, 593–619
K.O. Friedrichs (1948) Studies and Essays presented to R. Courant on his 60th Birthday, Jan. 8, 1948, ed. by K.O. Friedrichs, O.E. Neugebauer, J.J. Stoker. Criteria for the discrete character of the spectra of ordinary differential equations. Interscience, New York, pp. 145–160
E.L. Ince (1956) Ordinary Differential Equations. Dover Publications, New York
E.C. Kemble (1937) The Fundamental Principles of Quantum Mechanics. McGraw Hill, New York
P. Ledoux (1940) Sur la théorie des oscillations radiales d’une étoile. Astrophys. Norvegica 3, 193–215
P. Ledoux (1949) Contributions à l’étude de la structure interne des étoiles et de leur stabilité. Mémoires de la Société Royale des Sciences de Liège, Série 4, 9, 7–294
P. Ledoux (1958) Astrophysics II: Stellar Structure, ed. by S. Flügge. Stellar stability. Handbuch der Physik, vol. 51 Springer, Berlin, pp. 605–688
P. Ledoux, J. Perdang (1980) Asymptotic approximation for nonradial stellar oscillations. Bulletin de la Société Mathématique de Belgique 32, 133–159
P. Ledoux, P. Smeyers (1966) Sur le spectre des oscillations non radiales d’un modèle stellaire. Compte-Rendus de l’Académie des Sciences de Paris 262, 841–844
P. Ledoux (1958) Th. Walraven, in Astrophysics II: Stellar Structure, ed. by S. Flügge. Variable stars. Handbuch der Physik, vol. 51 Springer, Berlin, pp. 353–604
J.W. Leibacher, R.F. Stein (1981) The Sun as a Star, ed. by S.D. Jordan. Oscillations and pulsations. Centre National de la Recherche Scientifique, Paris. National Aeronautics and Space Administration, Washington, D.C., pp. 263–287
D.J. Mullan (1989) g-mode pulsations in polytropes: high-precision eigenvalues and the approach to asymptotic behavior. Astrophys. J. 337, 1017–1022
D.J. Mullan, R.K. Ulrich (1988) Radial and nonradial pulsations of polytropes: high-precision eigenvalues and the approach of p-modes to asymptotic behavior. Astrophys. J. 331, 1013–1028
C.L. Pekeris (1938) Nonradial oscillations of stars. Astrophys. J. 88, 189–199
R.D. Richtmyer (1978) Principles of Advanced Mathematical Physics, vol. 1. Springer, New York
S. Rosseland (1932) The theory of oscillating fluid globes. Publications from Oslo University Observatory 1, No. 2, 3–22
E. Sauvenier-Goffin (1951) Note sur les pulsations non-radiales d’une sphère homogène compressible. Bulletin de la Société Royale des Sciences de Liège 20, 20–38
P. Smeyers (1963) Sur les oscillations non radiales adiabatiques d’étoiles massives. Acad. R. Belg. Bull. Cl. Sci. 5e sér. 49, 128–141
P. Smeyers (1966a) Les oscillations non radiales et la convection dans les étoiles. Ann. d’Astrophys. 29, 539–548
P. Smeyers (1966b) Les oscillations linéaires et adiabatiques de la sphère homogène. Acad. R. Belg. Bull. Cl. Sci. 5e sér. 52, 1126–1142
P. Smeyers (1967) Les oscillations non radiales des étoiles massives. Bulletin de la Société Royale des Sciences de Liège, 36e année, no 7-8, 357–392
T.E. Sterne (1937) Modes of radial oscillation. Mon. Not. R. Astron. Soc. 97, 582–593
I. Tolstoy (1973) Wave Propagation. McGraw-Hill, New York
C.L. Wolff (1979) Some simple properties of stellar pulsation modes. Astrophys. J. 227, 943–954
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Smeyers, P. (2010). Classification of the Spheroidal Normal Modes. In: Linear Isentropic Oscillations of Stars. Astrophysics and Space Science Library, vol 371. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13030-4_11
Download citation
DOI: https://doi.org/10.1007/978-3-642-13030-4_11
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-13029-8
Online ISBN: 978-3-642-13030-4
eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)