Skip to main content

X-Ray and X-Ray-CT

  • Chapter

Abstract

Since their discovery in 1895, X-rays have been widely used for imaging humans. Recently, they have also gained an importance in small animal imaging (SAI). Most techniques known from clinical medicine, including single- and dual-energy X-ray imaging, have been successfully ported to SAI and are the subject of this chapter. As trivial as it is, simple X-ray examinations may bring diagnostically valuable information in a variety of applications. Unenhanced radiography reveals skeletal anatomy, contrast-enhanced imaging allows improved visualization of the vasculature and strongly vascularized areas, and dedicated methods such as bone densitometry deliver quantitative information. In analogy to clinical X-ray imaging, we will separately describe standard two-dimensional (2D) projection imaging and the more advanced three-dimensional (3D) computed tomography (CT) imaging techniques. Also in analogy to clinical applications, CT is considered to be of significantly higher importance as it provides more information and possibilities than conventional 2D approaches. It will therefore be covered in much more detail.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Almajdub M, Magnier L, Juillard L, Janier M (2008) Kidney volume quantification using contrast-enhanced in vivo X-ray micro-CT in mice. Contrast Media Mol Imaging 3(3):120–126

    Article  PubMed  CAS  Google Scholar 

  • Alvarez RE, Macovski A (1976) Energy-selective reconstructions in x-ray computerized tomography. Phys Med Biol 21(5):733–744

    Article  PubMed  CAS  Google Scholar 

  • Badea CT, Hedlund LW, Lin MD, Boslego Mackel JF, Johnson GA (2006) Tumor imaging in small animals with a combined micro-CT/micro-DSA system using iodinated conventional and blood pool contrast agents. Contrast Media Mol Imaging 1(4):153–164

    Article  PubMed  CAS  Google Scholar 

  • Badea CT, Drangova M, Holdsworth DW, Johnson GA (2008) In vivo small-animal imaging using micro-CT and digital subtraction angiography. Phys Med Biol 53(19):R19–R50

    Article  Google Scholar 

  • Bartling SH, Stiller W, Semmler W, Kiessling F (2007) Small animal computed tomography imaging. Curr Med Imaging Rev 3:45–59

    Article  Google Scholar 

  • Boone J, Velazquez O, Cherry SR (2004) Small-animal X-ray dose from micro-CT. Mol Imaging 3(3):149–158

    Article  PubMed  Google Scholar 

  • Deak P, van Straten M, Shrimpton PC, Zankl M, Kalender WA (2008) Validation of a Monte Carlo tool for patient-specific dose simulations in multi-slice computed tomography. Eur Radiol 18:759–772

    Article  PubMed  Google Scholar 

  • Del Guerra A, Belcari N, Llacer GL, Marcatili S, Moehrs S, Panetta D (2008) Advanced radiation measurements techniques in diagnostic radiology and molecular imaging. Radiat Prot Dosimetry 131(1):136–142

    Article  PubMed  Google Scholar 

  • Engelke K, Prevrhal S, Genant HK (2008) Macro and micro imaging of bone architecture. In: Bilezikian J, Raisz L, Martin TJ (eds) Principles of bone biology, vol II. Academic, San Diego

    Google Scholar 

  • Flohr T, McCollough CH, Bruder H et al (2006) First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol 16:256–268

    Article  PubMed  Google Scholar 

  • Ford NL, Thornton MM, Holdsworth DW (2003) Fundamental image quality limits for microcomputed tomography in small animals. Med Phys 30(11):2869–2877

    Article  PubMed  CAS  Google Scholar 

  • Holdsworth DW, Thornton MM (2002) Micro-CT in small animal and specimen imaging. Trends Biotechnol 20(8):S34–S39

    Article  Google Scholar 

  • Johnson TRC, Krauß B, Sedlmair M et al (2007) Material differentiaiton by dual energy CT: initial experience. Eur Radiol 17:1510–1517

    Article  PubMed  Google Scholar 

  • Kalender WA (2005) Computed tomography. fundamentals, system technology, image quality, applications, 2nd edn. Publicis, Erlangen

    Google Scholar 

  • Kalender WA, Perman WH, Vetter JR, Klotz E (1986) Evaluation of a prototype dual-energy computed tomographic apparatus. I. Phantom studies. Med Phys 13(3):334–339

    Article  PubMed  CAS  Google Scholar 

  • Kalender WA, Deak P, Kellermeier M, Van Straten M, Vollmar S (2009) Application- and patient size-dependent optimization of x-ray spectra for CT. Med Phys 36(3):993–1007

    Article  PubMed  Google Scholar 

  • Kastl S, Sommer T, Klein W, Hohenberger W, Engelke K (2002) Accuracy and precision of bone mineral density and bone mineral content in excised rat humeri using fan beam dual-energy X-ray absorptiometry. Bone 30(1):243–246

    Article  PubMed  CAS  Google Scholar 

  • Libouban H, Simon Y, Silve C et al (2002) Comparison of pencil-, fan-, and cone-beam dual X-ray absorptiometers for evaluation of bone mineral content in excised rat bone. J Clin Densitom 5(4):355–361

    Article  PubMed  Google Scholar 

  • Nazarian A, Cory E, Muller R, Snyder BD (2009) Shortcomings of DXA to assess changes in bone tissue density and microstructure induced by metabolic bone diseases in rat models. Osteoporos Int 20(1):123–132

    Article  PubMed  CAS  Google Scholar 

  • Paulus MJ, Gleason SS, Kennel SJ, Hunsicker PR, Johnson DK (2000) High resolution X-ray computed tomography: an emerging tool for small animal cancer research. Neoplasia 2(1–2):62–70

    Article  PubMed  CAS  Google Scholar 

  • Ritman EL (2004) Micro-computed tomography – current status and development. Annu Rev Biomed Eng 6:185–208

    Article  PubMed  CAS  Google Scholar 

  • Schlomka JP, Roessl E, Dorscheid R et al (2008) Experimental feasibility of multi-energy photon-counting K-edge imaging in preclinical computed tomography. Phys Med Biol 53(15):4031–4047

    Article  PubMed  CAS  Google Scholar 

  • Soon G, Quintin A, Scalfo F et al (2006) PIXImus bone densitometer and associated technical measurement issues of skeletal growth in the young rat. Calcif Tissue Int 78(3):186–192

    Article  PubMed  CAS  Google Scholar 

  • UNSCEAR (2000) Annex D: medical radiation exposures. United Nations Publications, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Willi A. Kalender .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kalender, W.A., Deak, P., Engelke, K., Karolczak, M. (2011). X-Ray and X-Ray-CT. In: Kiessling, F., Pichler, B. (eds) Small Animal Imaging. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12945-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12945-2_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12944-5

  • Online ISBN: 978-3-642-12945-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics