Skip to main content

Next Generation Frame Rate Conversion Algorithms

  • Chapter
High-Quality Visual Experience

Abstract

There is an increasing trend towards panel displays in consumer electronics, and they are already replacing conventional Cathode Ray Tube (CRT) displays due to their various advantages. However, the main problem of the panel displays, namely motion blur, still remains unsolved. This shortcoming should be overcome efficiently to satisfy increasing demands of viewers such as artifact-free interpolation in dynamic videos. Among many frame-rate up conversion (FRUC) methods that address this problem, motion-compensated frame interpolation (MCFI) algorithms yield superior results with relatively less artifacts. Conventional MCFI techniques utilize block-based translational motion models and, in general, linear interpolation schemes. These methods, however, suffer from blocking artifacts especially at object boundaries despite several attempts to avoid them. Region-based methods tackle this problem by segmenting homogeneous, or smoothly varying, motion regions that are supposed to correspond real objects (or their parts) in the scene. In this chapter, two region-based MCFI methods that adopt 2D homography and 3D rigid body motion models are presented in the order of increasing complexity. As opposed to the conventional MCFI approaches where motion model interpolation is performed in the induced 2D motion parameter space, the common idea behind both methods is to perform the interpolation in the parameter space of the original 3D motion and structure elements of the scene. Experimental results suggest that the proposed algorithms achieve visually pleasing results without halo effects on dynamic scenes with complex motion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chen, H., Kim, S.S., Lee, S.H., Kwon, O.J., Sung, J.H.: Nonlinearity Compensated Smooth Frame Insertion for Motion-blur Reduction in LCD. In: Proc. IEEE 7th Multimedia Signal Processing Workshop, Shangai, China (2005)

    Google Scholar 

  2. Ha, T., Lee, S., Kim, J.: Motion Compensated Frame Interpolation by New Block-based Motion Estimation Algorithm. IEEE Transactions on Consumer Electronics 50(2), 752–759 (2004)

    Article  Google Scholar 

  3. Choi, B.D., Han, J.W., Kim, C.S., Ko, S.J.: Motion-Compensated Frame Interpolation Using Bilateral Motion Estimation and Adaptive Overlapped Block Motion Compensation. IEEE Transactions on Circuits and Systems for Video Technology 17(4), 407–416 (2007)

    Article  Google Scholar 

  4. Fujiwara, S., Taguchi, A.: Motion-compensated Frame Rate Up-conversion Based on Block Matching Algorithm with Multi-size Blocks. In: Proc. IEEE International Symposium on Intelligent Signal Processing and Communication Systems, Hong Kong, China (2005)

    Google Scholar 

  5. Lee, S.H., Yang, S., Jung, Y.Y., Park, R.H.: Adaptive Motion-compensated Interpolation for Frame Rate Up-conversion. In: Proc. IEEE International Conference on Computers in Education, Auckland, New Zeland (2002)

    Google Scholar 

  6. Jeon, B.W., Lee, G.I., Lee, S.H., Park, R.H.: Coarse-to-Fine Frame Interpolation for Frame Rate Up-Conversion Using Pyramid Structure. IEEE Transactions on Consumer Electronics 49(3), 499–508 (2003)

    Article  MathSciNet  Google Scholar 

  7. Biswas, M., Nguyen, T.: A Novel Motion Estimation Algorithm Using Phase Plane Correlation for Frame Rate Conversion. In: Proc. IEEE Conference Record of the Thirty-Sixth Asilomar Conference on Signals, Systems and Computers (2002)

    Google Scholar 

  8. Choi, B.T., Lee, S.H., Ko, S.J.: New Frame Rate Up-Conversion Using Bi-Directional Motion Estimation. IEEE Transactions on Consumer Electronics 46(3), 603–609 (2000)

    Article  Google Scholar 

  9. Mishima, N., ltoh, G.: Novel Frame Interpolation Method For Hold-Type Displays. In: Proc. IEEE International Conference on Image Processing, Singapore (2004)

    Google Scholar 

  10. Sugiyama, K., Aoki, T., Hangai, S.: Motion Compensated Frame Rate Conversion Using Normalized Motion Estimation. In: Proc. IEEE Workshop on Signal Processing Systems Design and Implementation, Athens, Greece (2005)

    Google Scholar 

  11. Chen, T.: Adaptive Temporal Interpolation Using Bi-directional Motion Estimation and Compensation. In: Proc. IEEE International Conference on Image Processing, Rochester, NY, USA (2002)

    Google Scholar 

  12. Haan, G., Biezen, P.W.A.C.: An Efficient True-Motion Estimator Using Candidate Vectors from a Parametric Motion Model. IEEE Transactions on Circuits and Systems for Video Technology 8(1), 85–91 (1998)

    Article  Google Scholar 

  13. Hilman, K., Park, H.W., Kim, Y.: Using Motion-Compensated Frame-Rate Conversion for the Correction of 3: 2 Pulldown Artifacts in Video Sequences. IEEE Transactions On Circuits and Systems for Video Technology 10(6), 869–877 (2000)

    Article  Google Scholar 

  14. Koga, T., Iinuma, K., Hirano, A., Iijima, Y., Ishigora, T.: Motion Compensated Inter-frame Coding for Video Conferencing. In: Proc. IEEE National Telecommunications Conference, New Orleans, LA, USA (1981)

    Google Scholar 

  15. Zhu, C., Lin, X., Chau, L.P.: Hexagon-Based Search Pattern for Fast Block Motion Estimation. IEEE Transactions on Circuits and Systems for Video Technology 12(5), 349–355 (2002)

    Article  Google Scholar 

  16. Zhu, S., Ma, K.K.: A New Diamond Search Algorithm for Fast Block-Matching Motion Estimation. IEEE Transactions on Image Processing 9(2), 287–290 (2000)

    Article  MathSciNet  Google Scholar 

  17. Cheng, Y., Wang, Z., Dai, K., Guo, J.: A Fast Motion Estimation Algorithm Based on Diamond and Triangle Search Patterns. In: Marques, J.S., Pérez de la Blanca, N., Pina, P. (eds.) IbPRIA 2005. LNCS, vol. 3522, pp. 419–426. Springer, Heidelberg (2005)

    Google Scholar 

  18. Beric, A., Haan, G., Meerbergen, J., Sethuraman, R.: Towards An Efficient High Quality Picture-Rate Up-Converter. In: Proc. IEEE International Conference on Image Processing, Barcelona, Spain (2003)

    Google Scholar 

  19. Lee, S., Kwon, O., Park, R.: Weighted-adaptive Motion-compensated Frame Rate Up-conversion. IEEE Transactions on Consumer Electronics 49(3), 485–491 (2003)

    Article  Google Scholar 

  20. Al-Mualla, M.E.: Motion Field Interpolation for Frame Rate Conversion. In: Proc. IEEE International Symposium on Circuit and Systems, Bankok, Thailand (2003)

    Google Scholar 

  21. Kuo, T., Kim, J., Jay Kuo, C.C.: Motion-Compensated Frame Interpolation Scheme For H.263 Codec. In: Proc. IEEE International Symposium on Circuit and Systems, Orlando, Florida, USA (1999)

    Google Scholar 

  22. Tiehan, L.U.: Motion-Compensated Frame Rate Conversion with Protection Against Compensation Artifacts. WIPO, Patent No. 2007123759 (2007)

    Google Scholar 

  23. Ohwaki, K., Takeyama, Y., Itoh, G., Mishima, N.: Apparatus, Method, and Computer Program Product for Detecting Motion Vector and for Creating Interpolation Frame. US Patent Office (US PTO), Patent No. 2008069221 (2008)

    Google Scholar 

  24. Sato, K., Yamasaki, M., Hirayama, K., Yoshimura, H., Hamakawa, Y., Douniwa, K., Ogawa, Y.: Interpolation Frame Generating Method and Interpolation Frame Generating Apparatus. US PTO, Patent No. 2008031338 (2008)

    Google Scholar 

  25. Chen, H.F., Kim, S.S., Sung, J.H.: Frame Interpolator, Frame Interpolation Method and Motion Reliability Evaluator. US PTO, Patent No. 2007140346 (2007)

    Google Scholar 

  26. Ohwaki, K., Itoh, G., Mishima, N.: Method, Apparatus and Computer Program Product for Generating Interpolation Frame. US PTO, Patent No. 2006222077 (2006)

    Google Scholar 

  27. Bugwadia, K., Petajan, E.D., Puri, N.N.: Motion Compensation Image Interpolation and Frame Rate Conversion for HDTV. US PTO, Patent No. 6229570 (2001)

    Google Scholar 

  28. Benois-Pineau, J., Nicolas, H.: A New Method for Region-based Depth Ordering in a Video Sequence: Application to Frame Interpolation. Journal of Visual Communication and Image Representation 13(3), 363–385 (2002)

    Article  Google Scholar 

  29. Wang, J.: Video Temporal Reconstruction and Frame Rate Conversion. Wayne State University, Detroit (2006)

    Google Scholar 

  30. Turetken, E., Alatan, A.A.: Region-based Motion-compensated Frame Rate Up-conversion by Homography Parameter Interpolation. In: Proc. IEEE International Conference on Image Processing, Cairo, Egypt (2009)

    Google Scholar 

  31. Bleyer, M., Gelautz, M., Rhemann, C.: Region-based Optical Flow Estimation with Treatment of Occlusions. In: Proc. Joint Hungarian-Austrian Conference on Image Processing and Pattern Recognition, Veszprem, Hungary (2005)

    Google Scholar 

  32. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  33. Tsai, R.Y., Huang, T.S.: Estimating Three-dimensional Motion Parameters of a Rigid Planar Patch. IEEE Transactions on Acoustics, Speech and Signal Processing 29(6), 1147–1152 (1981)

    Article  Google Scholar 

  34. Faugeras, O., Lustman, F.: Motion and Structure from Motion in a Piecewise Planar Environment. International Journal of Pattern Recognition and Artifcial Intelligence 2(3), 485–508 (1988)

    Article  Google Scholar 

  35. Zhang, Z., Hanson, A.R.: 3D Reconstruction Based on Homography Mapping. In: Proc. ARPA Image Understanding Workshop, Palm Springs, CA, USA (1996)

    Google Scholar 

  36. Malis, E., Vargas, M.: Deeper Understanding of the Homography Decomposition for Vision-based Control. Research Report INRIA (2007)

    Google Scholar 

  37. Ozkalayci, B., Gedik, S., Alatan, A.: 3-D Structure Assisted Reference View Generation for H.264 Based Multi-View Video Coding. In: Proc. IEEE Picture Coding Symposium, Lisbon, Portugal (2007)

    Google Scholar 

  38. Cigla, C., Zabulis, X., Alatan, A.: Region-Based Dense Depth Extraction From Multi-View Video. In: Proc. IEEE International Conference on Image Processing, San Antonio Texas, USA (2007)

    Google Scholar 

  39. Cigla, C., Alatan, A.: Object Segmentation in Multi-view Video via Color, Depth and Motion Cues. In: Proc. IEEE International Conference on Image Processing, San Diego, California, USA (2008)

    Google Scholar 

  40. Lowe, D.G.: Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  41. Fischler, M.A., Bolles, R.C.: Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. Communications of the ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  42. Paragios, N., Chen, Y., Faugeras, O.: Hand Book of Mathematical Models in Computer Vision. Springer, USA (2006)

    Book  Google Scholar 

  43. Akko-Kayo: Multi-view Sequence by Department of Information Electronics at Nagoya University, http://www.tanimoto.nuee.nagoya-u.ac.jp/~fukushima/mpegftv/Akko.htm (accessed September 5, 2009)

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gedik, O.S., Türetken, E., Alatan, A.A. (2010). Next Generation Frame Rate Conversion Algorithms. In: Mrak, M., Grgic, M., Kunt, M. (eds) High-Quality Visual Experience. Signals and Communication Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12802-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12802-8_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12801-1

  • Online ISBN: 978-3-642-12802-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics