Skip to main content

A New Approach to the Treatment of Separatrix Chaos and Its Applications

  • Chapter
Book cover Hamiltonian Chaos Beyond the KAM Theory

Part of the book series: Nonlinear Physical Science ((NPS,volume 0))

Abstract

We consider time-periodically perturbed 1D Hamiltonian systems possessing one or more separatrices. If the perturbation is weak, then the separatrix chaos is most developed when the perturbation frequency lies in the logarithmically small or moderate ranges: this corresponds to the involvement of resonance dynamics into the separatrix chaos. We develop a method matching the discrete chaotic dynamics of the separatrix map and the continuous regular dynamics of the resonance Hamiltonian. The method has allowed us to solve the long-standing problem of an accurate description of the maximum of the separatrix chaotic layer width as a function of the perturbation frequency. It has also allowed us to predict and describe new phenomena including, in particular: (i) a drastic facilitation of the onset of global chaos between neighbouring separatrices, and (ii) a huge increase in the size of the low-dimensional stochastic web.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdullaev S.S., 2006, Construction of Mappings for Hamiltonian Systems and Their Applications, Springer, Berlin, Heidelberg.

    MATH  Google Scholar 

  • Abramovitz M. and Stegun I., 1970, Handbook of Mathematical Functions, Dover, New York.

    Google Scholar 

  • Andronov A.A., Vitt A.A. and Khaikin S.E., 1966, Theory of Oscillators, Pergamon, Oxford.

    MATH  Google Scholar 

  • Arnold V.I., 1964, Instability of dynamical systems with several degrees of freedom, Sov. Math. Dokl., 5, 581–585.

    Google Scholar 

  • Bogolyubov N.N. and Mitropolsky Yu.A., 1961, Asymptotic Methods in the Theory of Nonlinear Oscillators, Gordon and Breach, New York.

    Google Scholar 

  • Carmona H.A. et al., 1995, Two dimensional electrons in a lateral magnetic super-lattice, Phys. Rev. Lett., 74, 3009–3012.

    Article  ADS  Google Scholar 

  • Chernikov A.A. et al., 1987a, Minimal chaos and stochastic webs, Nature, 326, 559–563.

    Article  MathSciNet  ADS  Google Scholar 

  • Chernikov A.A. et al., 1987b, Some peculiarities of stochastic layer and stochastic web formation, Phys. Lett. A, 122, 39–46.

    Article  MathSciNet  ADS  Google Scholar 

  • Chernikov A.A. et al., 1988, Strong changing of adiabatic invariants, KAM-tori and web-tori, Phys. Lett. A, 129, 377–380.

    Article  MathSciNet  ADS  Google Scholar 

  • Chirikov B.V., 1979, A universal instability of many-dimensional oscillator systems, Phys. Rep., 52, 263–379.

    Article  MathSciNet  ADS  Google Scholar 

  • del-Castillo-Negrete D., Greene J.M. and Morrison P.J., 1996, Area-preserving non-twist maps: periodic orbits and transition to chaos, Physica D, 61, 1–23.

    Article  MathSciNet  Google Scholar 

  • Dullin H.R., Meiss J.D. and Sterling D., 2000, Generic twistless bifurcations, Non-linearity, 13, 203–224.

    MathSciNet  ADS  MATH  Google Scholar 

  • Dykman M.I., Soskin S.M. and Krivoglaz M.A., 1985, Spectral distribution of a nonlinear oscillator performing Brownian motion in a double-well potential, Physica A, 133, 53–73.

    Article  ADS  Google Scholar 

  • Elskens Y. and Escande D.F., 1991, Slowly pulsating separatrices sweep homoclinic tangles where islands must be small: an extension of classical adiabatic theory, Nonlinearity, 4, 615–667.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Fromhold T.M. et al., 2001, Effects of stochastic webs on chaotic electron transport in semiconductor superlattices, Phys. Rev. Lett, 87, 046803-1–046803-4.

    Article  ADS  Google Scholar 

  • Fromhold T.M. et al., 2004, Chaotic electron diffusion through stochastic webs enhances current flow in superlattices, Nature, 428, 726–730.

    Article  ADS  Google Scholar 

  • Gelfreich V., private communication.

    Google Scholar 

  • Gelfreich V.G. and Lazutkin V.F., 2001, Splitting of separatrices: perturbation theory and exponential smallness, Russian Math. Surveys, 56, 499–558.

    Article  MathSciNet  ADS  Google Scholar 

  • Howard J.E. and Hohs S.M., 1984, Stochasticity and reconnection in Hamiltonian systems, Phys. Rev. A, 29, 418–421.

    Article  MathSciNet  ADS  Google Scholar 

  • Howard J.E. and Humpherys J., 1995, Non-monotonic twist maps, Physica, D 80, 256–276.

    MathSciNet  Google Scholar 

  • Landau L.D. and Lifshitz E.M., 1976, Mechanics, Pergamon, London.

    Google Scholar 

  • Leonel E.D., 2007, Corrugated Waveguide under Scaling Investigation, Phys. Rev. Lett., 98, 114102-1–114102-4.

    Article  ADS  Google Scholar 

  • Lichtenberg A.J. and Lieberman M.A., 1992, Regular and Stochastic Motion, Springer, New York.

    Google Scholar 

  • Luo A.C.J., 2004, Nonlinear dynamics theory of stochastic layers in Hamiltonian systems, Appl. Mech. Rev., 57, 161–172.

    Article  ADS  Google Scholar 

  • Luo A.C.J., Gu K. and Han R.P.S., 1999, Resonant-separatrix webs in stochastic layers of the Twin-Well duffing oscillator, Nonlinear Dyn., 19, 37–48.

    Article  MATH  Google Scholar 

  • Morozov A.D., 2002, Degenerate resonances in Hamiltonian systems with 3/2 degrees of freedom, Chaos, 12, 539–548.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Neishtadt A.I., 1986, Change in adiabatic invariant at a separatrix, Sov. J. Plasma Phys., 12, 568–573.

    Google Scholar 

  • Neishtadt A.I., Sidorenko V.V. and Treschev D.V., 1997, Stable periodic motions in the problem on passage trough a separatrix, Chaos, 7, 2–11.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Piftankin G.N. and Treschev D.V., 2007, Separatrix maps in Hamiltonian systems, Russian Math. Surveys, 62, 219–322.

    Article  ADS  MATH  Google Scholar 

  • Prants S.V., Budyansky M.V., Uleysky M.Yu. and Zaslavsky G.M., 2006, Chaotic mixing and transport in a meandering jet flow, Chaos, 16, 033117-1–033117-8.

    Article  MathSciNet  ADS  Google Scholar 

  • Rom-Kedar V., 1990, Transport rates of a class of two-dimensional maps and flows, Physica D, 43, 229–268.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Rom-Kedar V., 1994, Homoclinic tangles-classification and applications, Nonlinearity, 7, 441–473.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Schmelcher P. and Shepelyansky D.L., 1994, Chaotic and ballistic dynamics for two-dimensional electrons in periodic magnetic fields, Phys. Rev. B, 49, 7418–7423.

    Article  ADS  Google Scholar 

  • Shevchenko I.I., 1998, Marginal resonances and intermittent Behavious in the motion in the vicinity of a separatrix, Phys. Scr., 57, 185–191.

    Article  ADS  Google Scholar 

  • Shevchenko I.I., 2008, The width of a chaotic layer, Phys. Lett. A, 372, 808–816.

    Article  ADS  MATH  Google Scholar 

  • Schmidt G.J.O., 1993, Deterministic diffusion and magnetotransport in periodically modulated magnetic fields, Phys. Rev. B, 47, 13007–13010.

    Article  ADS  Google Scholar 

  • Soskin S.M., Unpublished.

    Google Scholar 

  • Soskin S.M. and Mannella R., 2009a, New approach to the treatment of separatrix chaos, In Macucci C. and Basso G. (eds.) Noise and Fluctuations: 20 th International Conference on Noise and Fluctuations (ICNF-2009), MP CONFERENCE PROCEEDINGS 1129, 25–28, American Institute of Physics, Melville, New York.

    Google Scholar 

  • Soskin S.M. and Mannella R., 2009b, Maximal width of the separatrix chaotic layer, Phys. Rev. E., 80, 066212-1–006212-1F.

    Article  ADS  Google Scholar 

  • Soskin S.M., Mannella R., Arrayás M. and Silchenko A.N., 2001, Strong enhancement of noise-induced escape by transient chaos, Phys. Rev. E, 63, 051111-1–051111-6.

    Article  ADS  Google Scholar 

  • Soskin S.M., Mannella R. and McClintock P.V.E., 2003, Zero-Dispersion Phenomena in oscillatory systems, Phys. Rep., 373, 247–409.

    Article  MathSciNet  ADS  Google Scholar 

  • Soskin S.M., Yevtushenko O.M. and Mannella R., 2005, Divergence of the chaotic layer width and strong acceleration of the spatial chaotic transport in periodic systems driven by an adiabatic ac force, Phys. Rev. Lett, 95, 224101-1–224101-4.

    Article  ADS  Google Scholar 

  • Soskin S.M., Mannella R. and Yevtushenko O.M., 2008a, Matching of separatrix map and resonant dynamics, with application to global chaos onset between separatrices, Phys. Rev. E, 11, 036221-1–036221-29.

    MathSciNet  ADS  Google Scholar 

  • Soskin S.M., Mannella R. and Yevtushenko O.M., 2008b, Separatrix chaos: new approach to the theoretical treatment. In: Chandre C, Leoncini X., and Zaslavsky G. (eds.) Chaos, Complexity and Transport: Theory and Applications (Proceedings of the CCT-07), 119–128, World Scientific, Singapore.

    Chapter  Google Scholar 

  • Soskin S.M., Khovanov I.A., Mannella R. and McClintock P.V.E., 2009, Enlargement of a low-dimensional stochastic web, Macucci C. and Basso G. (eds.) Noise and Fluctuations: 20 th International Conference on Noise and Fluctuations (ICNF-2009), AIP CONFERENCE PROCEEDINGS 1129, 17–20, American Institute of Physics, Melville, New York.

    Google Scholar 

  • Soskin S.M., Yevtushenko O.M. and Mannella R., 2010a, Adiabatic divergence of the chaotic layer width and acceleration of chaotic and noise-induced transport, Commun. Nonlinear Sci. Numer. Simulat, 15, 16–23.

    Article  ADS  Google Scholar 

  • Soskin S.M., McClintock P.V.E., Fromhold T.M., Khovamov I.A. and Mannella R., 2010b, Stochastic webs and quantium transport in superlattices: an introductory review, Contemportary Physics, 51, 233–248.

    Article  ADS  Google Scholar 

  • Vecheslavov V.V., 2004, Chaotic layer of a pendulum under low-and medium-frequency perturbations, Tech. Phys., 49, 521–525.

    Article  Google Scholar 

  • Ye P.D. et al., 1995, Electrons in a periodic magnetic field induced by a regular array of micromagnets, Phys. Rev. Lett., 74, 3013–3016.

    Article  ADS  Google Scholar 

  • Yevtushenko O.M. and Richter K., 1998, Effect of an ac electric field on chaotic electronic transport in a magnetic superlattice, Phys. Rev. B, 57, 14839–14842.

    Article  ADS  Google Scholar 

  • Yevtushenko O.M. and Richter K., 1999, AC-driven anomalous stochastic diffusion and chaotic transport in magnetic superlattices, Physica, E 4, 256–276.

    ADS  Google Scholar 

  • Zaslavsky G.M., 2005, Hamiltonian Chaos and Fractional Dynamics, Oxford University Press, Oxford.

    MATH  Google Scholar 

  • Zaslavsky G.M., 2007, Physics of Chaos in Hamiltonian Systems, 2nd ed., Imperial Colledge Press, London.

    Book  MATH  Google Scholar 

  • Zaslavsky G.M. and Filonenko N.N., 1968, Stochastic instability of trapped particles and conditions of application of the quasi-linear approximation, Sov. Phys. JETP, 27, 851–857.

    ADS  Google Scholar 

  • Zaslavsky G.M. et al., 1986, Stochastic web and diffusion of particles in a magnetic field, Sov. Phys. JETP, 64, 294–303.

    MathSciNet  Google Scholar 

  • Zaslavsky G.M., Sagdeev R.D., Usikov D.A. and Chernikov A.A., 1991, Weak Chaos and Quasi-Regular Patterns, Cambridge University Press, Cambridge.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Soskin, S.M., Mannella, R., Yevtushenko, O.M., Khovanov, I.A., McClintock, P.V.E. (2010). A New Approach to the Treatment of Separatrix Chaos and Its Applications. In: Luo, A.C.J., Afraimovich, V. (eds) Hamiltonian Chaos Beyond the KAM Theory. Nonlinear Physical Science, vol 0. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12718-2_2

Download citation

Publish with us

Policies and ethics