Skip to main content

Transferring Knowledge of Activity Recognition across Sensor Networks

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6030))

Abstract

A problem in performing activity recognition on a large scale (i.e. in many homes) is that a labelled data set needs to be recorded for each house activity recognition is performed in. This is because most models for activity recognition require labelled data to learn their parameters. In this paper we introduce a transfer learning method for activity recognition which allows the use of existing labelled data sets of various homes to learn the parameters of a model applied in a new home. We evaluate our method using three large real world data sets and show our approach achieves good classification performance in a home for which little or no labelled data is available.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abowd, G., Bobick, A., Essa, I., Mynatt, E., Rogers, W.: The aware home: Developing technologies for successful aging. In: Proceedings of AAAI Workshop and Automation as a Care Giver (2002)

    Google Scholar 

  2. Augusto, J.C., Nugent, C.D. (eds.): Designing Smart Homes, The Role of Artificial Intelligence. LNCS, vol. 4008. Springer, Heidelberg (2006)

    Google Scholar 

  3. Baxter, J.: A bayesian/information theoretic model of learning to learn via multiple task sampling. Machine Learning 28(1), 7–39 (1997)

    Article  MATH  Google Scholar 

  4. Bishop, C.M.: Pattern Recognition and Machine Learning (Information Science and Statistics). Springer, Heidelberg (2006)

    Book  Google Scholar 

  5. Caruana, R.: Multitask learning. In: Machine Learning, pp. 41–75 (1997)

    Google Scholar 

  6. Chieu, H.L., Lee, W.S., Kaelbling, L.P.: Activity recognition from physiological data using conditional random fields. In: SMA Symposium. MIT Alliance, Singapore (2006)

    Google Scholar 

  7. Cook, D.J., Das, S.K.: Smart Environments: Technology, Protocols and Applications. Wiley-Interscience, Hoboken (2004)

    Google Scholar 

  8. Dai, W., Chen, Y., Xue, G.-R., Yang, Q., Yu, Y.: Translated learning: Transfer learning across different feature spaces. In: NIPS 2008: Proceedings of the 22nd Annual Conference on Neural Information Processing Systems (NIPS 2008), Vancouver, Canada (2008)

    Google Scholar 

  9. Dai, W., Xue, G.-R., Yang, Q., Yu, Y.: Transferring naive bayes classifiers for text classification. In: AAAI, pp. 540–545 (2007)

    Google Scholar 

  10. Duong, T., Phung, D., Bui, H., Venkatesh, S.: Efficient duration and hierarchical modeling for human activity recognition. Artif. Intell. 173(7-8), 830–856 (2009)

    Article  Google Scholar 

  11. Huynh, T., Schiele, B.: Towards less supervision in activity recognition form wearable sensors. In: Proceedings of the 10th IEEE International Symposium on Wearable Computing (ISWC), Montreux, Switzerland (October 2006)

    Google Scholar 

  12. Huynh, T., Schiele, B.: Towards less supervision in activity recognition from wearable sensors. In: ISWC, pp. 3–10 (2006)

    Google Scholar 

  13. Katz, S.: Assessing self-maintenance: Activities of daily living, mobility, and instrumental activities of daily living. J. Am. Geriatrics Soc. 31(12), 721–726 (1983)

    Google Scholar 

  14. Lee, S.-I., Chatalbashev, V., Vickrey, D., Koller, D.: Learning a meta-level prior for feature relevance from multiple related tasks. In: ICML 2007: Proceedings of the 24th international conference on Machine learning, pp. 489–496. ACM, New York (2007)

    Chapter  Google Scholar 

  15. Lester, J., Choudhury, T., Kern, N., Borriello, G., Hannaford, B.: A hybrid discriminative/generative approach for modeling human activities. In: IJCAI, pp. 766–772 (2005)

    Google Scholar 

  16. Liao, L., Fox, D., Kautz, H.: Extracting places and activities from gps traces using hierarchical conditional random fields. The International Journal of Robotics Research 26(1), 119–134 (2007)

    Article  Google Scholar 

  17. Minka, T.P.: Estimating a dirichlet distribution. Technical report, Microsoft Research (2000)

    Google Scholar 

  18. Oliver, N., Garg, A., Horvitz, E.: Layered representations for learning and inferring office activity from multiple sensory channels. Comput. Vis. Image Underst. 96(2), 163–180 (2004)

    Article  Google Scholar 

  19. Patterson, D.J., Fox, D., Kautz, H.A., Philipose, M.: Fine-grained activity recognition by aggregating abstract object usage. In: ISWC, pp. 44–51. IEEE Computer Society, Los Alamitos (2005)

    Google Scholar 

  20. Rabiner, L.R.: A tutorial on hidden markov models and selected applications in speech recognition. Proceedings of the IEEE 77(2), 257–286 (1989)

    Article  Google Scholar 

  21. Raina, R., Ng, A.Y., Koller, D.: Constructing informative priors using transfer learning. In: ICML 2006: Proceedings of the 23rd international conference on Machine learning, pp. 713–720. ACM Press, New York (2006)

    Chapter  Google Scholar 

  22. Suzuki, R., Ogawa, M., Otake, S., Izutsu, T., Tobimatsu, Y., Izumi, S.-I., Iwaya, T.: Analysis of activities of daily living in elderly people living alone. Telemedicine 10, 260 (2004)

    Article  Google Scholar 

  23. Tapia, E.M., Intille, S.S., Larson, K.: Activity recognition in the home using simple and ubiquitous sensors. In: Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 158–175. Springer, Heidelberg (2004)

    Google Scholar 

  24. Thrun, S.: Is learning the nth thing any easier than learning the first? Advances in Neural Information Processing Systems 8, 640–646 (1996)

    Google Scholar 

  25. Truyen, T.T., Phung, D.Q., Bui, H.H., Venkatesh, S.: Hierarchical semi-markov conditional random fields for recursive sequential data. In: Neural Information Processing Systems, NIPS (2008)

    Google Scholar 

  26. van Kasteren, T., Englebienne, G., Kröse, B.: Recognizing activities in multiple contexts using transfer learning. In: Proceedings of the AAAI Fall Symposium on AI in Eldercare: New Solutions to Old Problems. AAAI Press, Menlo Park (2008), ISBN=978-1-57735-394-2

    Google Scholar 

  27. van Kasteren, T., Noulas, A., Englebienne, G., Kröse, B.: Accurate activity recognition in a home setting. In: UbiComp 2008: Proceedings of the 10th international conference on Ubiquitous computing, pp. 1–9. ACM, New York (2008)

    Chapter  Google Scholar 

  28. Williams, M.T.: Beta-binomial distribution for proportional confidence intervals. Technical report, University of Leeds (1998)

    Google Scholar 

  29. Wilson, D.H.: Assistive Intelligent Environments for Automatic Health Monitoring. PhD thesis, Carnegie Mellon University (2005)

    Google Scholar 

  30. Wu, J., Osuntogun, A., Choudhury, T., Philipose, M., Rehg, J.M.: A scalable approach to activity recognition based on object use. In: ICCV, pp. 1–8 (2007)

    Google Scholar 

  31. Wyatt, D., Philipose, M., Choudhury, T.: Unsupervised activity recognition using automatically mined common sense. AAAI, 21–27 (2005)

    Google Scholar 

  32. Zhang, J., Ghahramani, Z., Yang, Y.: Learning multiple related tasks using latent independent component analysis. In: Weiss, Y., Schölkopf, B., Platt, J. (eds.) Advances in Neural Information Processing Systems, vol. 18, pp. 1585–1592. MIT Press, Cambridge (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

van Kasteren, T.L.M., Englebienne, G., Kröse, B.J.A. (2010). Transferring Knowledge of Activity Recognition across Sensor Networks. In: Floréen, P., Krüger, A., Spasojevic, M. (eds) Pervasive Computing. Pervasive 2010. Lecture Notes in Computer Science, vol 6030. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12654-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12654-3_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12653-6

  • Online ISBN: 978-3-642-12654-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics