Skip to main content

Sparse Recovery Using Sparse Random Matrices

  • Conference paper
LATIN 2010: Theoretical Informatics (LATIN 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6034))

Included in the following conference series:

Abstract

Over the recent years, a new linear method for compressing high-dimensional data (e.g., images) has been discovered. For any high-dimensional vector x, its sketch is equal to Ax, where A is an m×n matrix (possibly chosen at random). Although typically the sketch length m is much smaller than the number of dimensions n, the sketch contains enough information to recover an approximation to x. At the same time, the linearity of the sketching method is very convenient for many applications, such as data stream computing and compressed sensing.

The major sketching approaches can be classified as either combinatorial (using sparse sketching matrices) or geometric (using dense sketching matrices). They achieve different trade-offs, notably between the compression rate and the running time. Thus, it is desirable to understand the connections between them, with the goal of obtaining the “best of both worlds” solution. Several recent results established such connections, indicating that the two approaches are just different manifestations of the same underlying phenomenon. This enabled the development of novel algorithms, including the first algorithms that provably achieve the (asymptotically) optimal compression rate and near-linear recovery time simultaneously.

In this talk we give an overview of the results in the area, as well as look at some of them in more detail. In particular, we will describe a new algorithm, called “Sequential Sparse Matching Pursuit (SSMP)”. In addition to having the aforementioned theoretical guarantees, the algorithm works well on real data, with the recovery quality often outperforming that of more complex algorithms, such as l1 minimization.

Joint work with: Radu Berinde, Anna Gilbert, Howard Karloff, Milan Ruzic and Martin Strauss.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Indyk, P. (2010). Sparse Recovery Using Sparse Random Matrices. In: López-Ortiz, A. (eds) LATIN 2010: Theoretical Informatics. LATIN 2010. Lecture Notes in Computer Science, vol 6034. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12200-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12200-2_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12199-9

  • Online ISBN: 978-3-642-12200-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics