Skip to main content

Satellite Laser Ranging

  • Chapter
  • First Online:
Sciences of Geodesy - I

Abstract

Determining the range to a satellite in orbit around the earth utilising the technique of satellite laser ranging (SLR) was pioneered in the early 1960s. The first successful ranging experiment was reported in the 3 December 1964 issue of Flight International (Smith 1964). Dr. Henry H. Plotkin of Goddard Space Flight Centre led a NASA team to track the Beacon-B (also known as Explorer-22) satellite for ten successful sessions during the period 11 October to 13 November 1964. A team from General Electric Co. (Valley Forge, Pennsylvania) also participated from Phoenix, Arizona. Using a telescope mounted with a ruby laser, expected range accuracy was about 3 m. Current accuracy is at the level of 1–2 cm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson, P., Lehr, C., Maestre, L. and Snyder, G. (1966) 2A10-Laser experiments for determining satellite orbits. IEEE J. Quantum Electron., 2(8), 215–219

    Article  Google Scholar 

  • Arnold, D.A. (1978) Optical and infrared transfer function of the LAGEOS retroreflector array. Final Report, NASA Grant NGR 09-015-002, Smithsonian Institution Astrophysical Observatory, Cambridge

    Google Scholar 

  • Artyukh, Y. (2007) Riga event timers: principles of operation and performance characteristics. Presentation at ILRS Fall 2007 Workshop, 25–28 September 2007, Grasse

    Google Scholar 

  • Bonnefond, P., Exertier, P., Schaeffer, P., Bruinsma, S. and Barlier, F. (1995) Satellite altimetry from a short-arc orbit technique: application to the Mediterranean. J. Geophys. Res., 100(C12), 25365–25382

    Article  Google Scholar 

  • Ciufolini, I. and Wheeler, J.A. (1995) Gravitation and Inertia. Princeton University Press, Princeton

    Google Scholar 

  • Combrinck, L. and Suberlak, V. (2007) Earth-tide as parameter of crustal motion correction for SLR station displacement. South Afr. J. Geol., 110(2–3), 203–210

    Article  Google Scholar 

  • Degnan, J.J. (1993) Millimeter accuracy satellite laser ranging: a review. In: Smith, D.E. and Turcotte, D.L. (eds) Contributions of Space Geodesy to Geodynamics: Geodynamics Series, Vol. 25. AGU, Washington, pp. 133–162

    Chapter  Google Scholar 

  • Degnan, J., (1994) SLR2000: an autonomous and eyesafe satellite laser ranging station. Proceedings of the 9th International Conference on Laser Ranging Instrumentation, Canberra, November 7–11, pp. 312–323

    Google Scholar 

  • Dunn, P., Torrence, M., Kolenkiewicz, R. and Smith, D. (1999) Earth scale defined by modern satellite ranging observations. Geophys. Res. Lett., 26(10), 1489–1492

    Article  Google Scholar 

  • Eanes, R.J., Schutz, B. and Tapley, B. (1983) Earth and ocean tide effects on Lageos and Starlette. In: Kuo, J.T. (ed) Proceedings of the 9th International Symposium on Earth Tides. E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, pp. 239–250

    Google Scholar 

  • Exertier, P., Nicolas, J. and Barlier, F. (2000) SLR: a point of view on scientific achievements and future requirements. Presentation at the 12th International Workshop Laser Ranging, Matera, November 2000

    Google Scholar 

  • Henize, K.G. (1957) The Baker-Nunn satellite tracking camera. Sky Telescope, 16(10), 108–111

    Google Scholar 

  • Hoffman-Wellenhof, B. and Moritz, H. (2005) Physical Geodesy. Springer, Wien

    Google Scholar 

  • Huang, C. and Liu, L. (1992) Analytical solutions to the four post-Newtonian effects in a near-Earth satellite orbit. Celest. Mech. Dynam. Astron., 53, 293–307

    Article  Google Scholar 

  • Husson, V.S. (1993) Historical MOBLAS System Characterisation. Located at http://ilrs.gsfc.nasa.gov

  • Kaplan, G.H. (2005) The IAU Resolutions on Astronomical Reference Systems, Time Scales and Earth Orientation Models, Explanation and Implementation. United States Naval Observatory Circular no. 179, USNO, Washington

    Google Scholar 

  • Klein, B.J. and Degnan, J.J. (1974) Optical antenna gain, 1. Transmitting antennas. Appl. Opt., 13, 2134–2140

    Article  Google Scholar 

  • Luthcke, S.B., Zelensky, N.P., Rowlands, D.D., Lemoine, F.G. and Williams, T.A. (2003) The 1-centimeter orbit: Jason-1 precision orbit determination using GPS, SLR, DORIS, and altimeter data. Mar. Geod., 26, 399–421

    Article  Google Scholar 

  • Marini, J.W. (1972) Correction of satellite tracking data for an arbitrary tropospheric profile. Radio Sci., 7, 223–231

    Article  Google Scholar 

  • Marini, J.W. and Murray, C.W. (1973) Correction of laser range tracking data for atmospheric refraction at elevations above 10 degrees, NASA Technical Memorandum, NASA-TM-X-70555, 60pp

    Google Scholar 

  • McCarthy, D.D. and Petit, G. (2003) IERS Conventions (2003) (IERS Technical Note; 32). Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main, 72–84

    Google Scholar 

  • Mendes, V.B. and Pavlis, E.C. (2004) High-accuracy Zenith delay prediction at optical wavelengths. Geophys. Res. Lett., 31, L14602

    Article  Google Scholar 

  • Mendes, V.B., Prates, G., Pavlis, E.C., Pavlis, D.E. and Langley, R.B. (2002) Improved mapping functions for atmospheric refraction correction in SLR. Geophys. Res. Lett., 29, 1414

    Article  Google Scholar 

  • Montenbruck, O. and Gill, E. (2001) Satellite orbits: models, methods and applications. Springer, Berlin

    Google Scholar 

  • Noll, C.E. and Dube, M. (2004) Archiving space geodesy data for 20+ years at the CDDIS. Eos Trans. Am. Geophys. Union, 85(47), Fall Meet. Suppl., Abstract SF21A-0010

    Google Scholar 

  • Noll, C.E. and Torrence, M. (2008) ILRS web site update. Poster Presented at the 16th International Laser Ranging Workshop, Poznan, 13–17 October 2008

    Google Scholar 

  • Otsubo, T. and Appleby, G. (2003) System-dependent centre-of-mass correction for spherical geodetic satellites. J. Geophys. Res., 108(B4), 2201

    Article  Google Scholar 

  • Pavlis, D.E., Moore, D., Luo, S., McCarthy, J.J. and Luthcke, S.B. (1999) GEODYN Operations Manual: 5 Volumes. Raytheon ITSS, Greenbelt, December, 1999

    Google Scholar 

  • Pearlman, M.R., Degnan, J.J. and Bosworth, J.M. (2002) The international laser ranging service. Adv. Space Res., 30, 135–143

    Article  Google Scholar 

  • Ries, J.C., Huang, C. and Watkins, M.M. (1988) The effect of general relativity on near-Earth satellites in the solar system barycentric and geocentric reference frames. Phys. Rev. Lett., 61, 903–906

    Article  Google Scholar 

  • Rubincam, D.P. (1988) Yarkovsky thermal drag on Lageos. J. Geophys. Res., 93(B11), 13805–13810

    Article  Google Scholar 

  • Rubincam, D.P. (1990) Drag on the LAGEOS satellite. J. Geophys. Res., 95, 4881–4886

    Article  Google Scholar 

  • Rubincam, D.P. and Weiss, N.R. (1986) Earth albedo and the orbit of LAGEOS. Celestial Mech., 38, 233–296

    Article  Google Scholar 

  • Samain, E., Torre, J.M., Guillemot, P., Leon, S., Petitbon, I. and Vrancken, P. (2007) OCA event timer. Presentation at ILRS Fall 2007 Workshop, 25–28 September 2007, Grasse

    Google Scholar 

  • Sanchez, B.V. (1974) Rotational dynamics of mathematical models of the nonrigid Earth. Applied Mechanical Research Laboratory Report. 1066, The University of Texas at Austin, Austin

    Google Scholar 

  • Scharroo, R., Wakker, K.F., Ambrosius, A.C. and Noomen, R. (1991) On the along-track accelerations of the Lageos satellite. J. Geophys. Res., 96, 729–740

    Article  Google Scholar 

  • Schillak, S. (2004) Analysis of the process of the determination of station coordinates by the satellite laser ranging based on results of the Borowiec SLR station in 1993.5–2000.5. Artif. Satellites, 39(3), 223–263

    Google Scholar 

  • Sinclair, A.T. and Appleby, G.M. (1986) SATAN—Programs for the determination and analysis of satellite orbits for SLR data, SLR Technical Note, No. 9, Royal Greenwich Observatory, Herstmonceux, 14pp

    Google Scholar 

  • Smith, D.E. and Dunn, P.J. (1980) Long term evolution of the LAGEOS orbit. J. Geophys. Res. Lett, 7, 437–440

    Article  Google Scholar 

  • Smith D, Zuber, M., Torrence, M., McGarry, J. and Pearlman, M. (2006) Laser ranging to the Lunar Reconnaissance Orbiter (LRO). Presentation at the 15th International Workshop on Laser Ranging Instrumentation, 15–20 October 2006, Canberra

    Google Scholar 

  • Smith, M.A. (1964) Laser Tracking Success. Published in Flight International, Chief editor M.A. Smith, Number 2908, Vol. 86

    Google Scholar 

  • Solomon, L.H. (1967) Some results at Baker-Nunn tracking stations. Smithsonian Astrophysical Observatory Special Reports, No. 244, 14pp

    Google Scholar 

  • Standish, E.M. (1998) JPL Planetary and Lunar Ephemerides, DE405/LE405, JPL IOM 312.F-98-048

    Google Scholar 

  • Tapley, B.D., Schutz, B.E., Eanes, R.J., Ries, J.C. and Watkins, M.M. (1993) LAGEOS laser ranging contributions to geodynamics, geodesy, and orbital dynamics, in contributions of space geodesy to geodynamics: Earth dynamics. Geodyn. Ser., 24, 147–174

    Article  Google Scholar 

  • Tapley, B.D., Schutz, B.E. and Born, G.H. (2004) Statistical Orbit Determination Burlington. Elsevier Academic Press, San Diego

    Google Scholar 

  • Tapley, B., Ries, J., Bettadpur, S., Chambers, D., Cheng, M., Condi, F., Gunter, B., Kang, Z., Nagel, P., Pastor, R., Pekker, T., Poole, S. and Wang, F. (2005) GGM02 – an improved Earth gravity field model from GRACE. J. Geod., doi: 10.1007/s00190-005-0480-z

    Google Scholar 

  • Vallado, D.A. (2001) Fundamentals of Astrodynamics and Applications, 2nd Ed. Space Technology Library, Microcosm Press, El Segundo; Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Vrancken, P., Samain, E. and Guillemot, P. (2008) Design and test of the time transfer by laser link (T2L2) optical subsystem. Proc. SPIE, 7003, 700311, doi: 10.1117/12.781123

    Article  Google Scholar 

Download references

Acknowledgments

The data used in this work were acquired as part of NASA’s Earth Science Data Systems and archived and distributed by the Crustal Dynamics Data Information System (CDDIS). Acknowledgement is made of the use of NASA MOBLAS system description documentation for Figs. 9.9, 9.10 and 9.12.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludwig Combrinck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Combrinck, L. (2010). Satellite Laser Ranging. In: Xu, G. (eds) Sciences of Geodesy - I. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11741-1_9

Download citation

Publish with us

Policies and ethics