Skip to main content

The Pros and Cons of Diffusion, Filters and Fixers in Atmospheric General Circulation Models

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 80))

Abstract

All atmospheric General Circulation Models (GCMs) need some form of dissipation, either explicitly specified or inherent in the chosen numerical schemes for the spatial and temporal discretizations. This dissipation may serve many purposes, including cleaning up numerical noise generated by dispersion errors or computational modes, and the Gibbs ringing in spectral models. Damping processes might also be used to crudely represent subgrid Reynolds stresses, eliminate undesirable noise due to poor initialization or grid-scale forcing from the physics parameterizations, cover up weak computational stability, damp tracer variance, and prevent the accumulation of potential enstrophy or energy at the smallest grid scales. This chapter critically reviews the wide selection of dissipative processes in GCMs. They are the explicitly added diffusion and hyper-diffusion mechanisms, divergence damping, vorticity damping, external mode damping, sponge layers, spatial and temporal filters, inherent diffusion properties of the numerical schemes, and a posteriori fixers used to restore lost conservation properties. All theoretical considerations are supported by many practical examples from a wide selection of GCMs. The examples utilize idealized test cases to isolate causes and effects, and thereby highlight the pros and cons of the diffusion, filters and fixers in GCMs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrews DG, Mahlman JD, Sinclair RW (1983) Eliassen-Palm diagnostics of wave-mean flow interaction in the GFDL “SKYHI” general circulation model. J Atmos Sci 40:2768–2784

    Article  Google Scholar 

  2. Arakawa A (1966) Computational design for long-term numerical integration of the equations of fluid motion: Two-dimensional incompressible flow. Part I. J Comput Phys 1:119–143

    MATH  Google Scholar 

  3. Arakawa A, Hsu YJG (1990) Energy conserving and potential-enstrophy dissipating schemes for the shallow water equations. Mon Wea Rev 118:1960–1969

    Article  Google Scholar 

  4. Arakawa A, Lamb VR (1981) A potential enstrophy and energy conserving scheme for the shallow water equations. Mon Wea Rev 109:18–36

    Article  Google Scholar 

  5. Arakawa A, Suarez MJ (1983) Vertical differencing of the primitive equations in sigma coordinates. Mon Wea Rev 111(1):34–45

    Article  Google Scholar 

  6. Asselin R (1972) Frequency filter for time integrations. Mon Wea Rev 100(5):487–490

    Article  Google Scholar 

  7. Baldauf M (2010) Linear stability analysis of Runge-Kutta based partial time-splitting schemes for the Euler equations. Mon. Wea. Rev., in press

    Google Scholar 

  8. Bates JR, Semazzi FHM, Higgins RW, Barros SRM (1990) Integration of the shallow water equations on the sphere using a vector semi-Lagrangian scheme with a multigrid solver. Mon Wea Rev 118:1615–1627

    Article  Google Scholar 

  9. Bates JR, Moorthi S, Higgins RW (1993) A global multilevel atmospheric model using a vector semi-Lagrangian finite difference scheme. Part I: Adiabatic formulation. Mon Wea Rev 121:244–263

    Google Scholar 

  10. Becker E (2001) Symmetric stress tensor formulation of horizontal momentum diffusion in global models of atmospheric circulation. J Atmos Sci 58:269–282

    Article  Google Scholar 

  11. Becker E (2003) Frictional heating in global climate models. Mon Wea Rev 131:508–520

    Article  Google Scholar 

  12. Becker E, Burkhardt U (2007) Nonlinear horizontal diffusion for GCMs. Mon Wea Rev 135: 1439–1454

    Article  Google Scholar 

  13. Bermejo R, Staniforth A (1992) The Conversion of Semi-Lagrangian Advection Schemes to Quasi-Monotone Schemes. Mon Wea Rev 120:2622–2632

    Article  Google Scholar 

  14. Black TL (1994) The new NMC mesoscale Eta model: Description and forecast examples. Weather and Forecasting 9:265–284

    Article  Google Scholar 

  15. Boer GJ, Denis B (1997) Numerical covergence of the dynamics of a GCM. Climate Dynamics 13:359–374

    Article  Google Scholar 

  16. Boer GJ, Shepherd TG (1983) Large-scale two-dimensional turbulence in the atmosphere. J Atmos Sci 40:164–184

    Article  Google Scholar 

  17. Bonaventura L, Ringler T (2005) Analysis of discrete shallow-water models on geodesic Delaunay grids with C-type staggering. Mon Wea Rev 133:2351–2373

    Article  Google Scholar 

  18. Bourke W, McAvaney B, Puri K, Thurling R (1977) Global modeling of atmospheric flow by spectral methods. In: Chang J (ed) Methods in Computational Physics, vol 17, Academic Press, pp 267–324

    Google Scholar 

  19. Boville BA (1986) Wave-mean flow interactions in a general circulation model of the troposphere and stratosphere. J Atmos Sci 43:1711–1725

    Article  Google Scholar 

  20. Boville BA (1991) Sensitivity of simulated climate to model resolution. J Climate 4:469–485

    Article  Google Scholar 

  21. Boville BA (2000) Toward a complete model of the climate system. In: Mote P, O’Neill A (eds) Numerical modeling of the global atmosphere in the climate system, NATO Science Series C: Mathematical and Physical Sciences, vol 550, Kluwer Academic Publishers, pp 419–442

    Google Scholar 

  22. Boville BA, Baumhefner DP (1990) Simulated forecast error and climate drift resulting from the omission of the upper stratosphere in numerical models. Mon Wea Rev 118:1517–1530

    Article  Google Scholar 

  23. Boville BA, Bretherton CS (2003) Heating and kinetic energy dissipation in the NCAR Community Atmosphere Model. J Climate 16:3877–3887

    Article  Google Scholar 

  24. Boville BA, Gent PR (1998) The NCAR Climate System Model, version one. J Climate 11:1115–1130

    Article  Google Scholar 

  25. Boville BA, Randel WJ (1986) Observations and simulation of the variability of the stratosphere and troposphere in January. J Atmos Sci 43:3015–3034

    Article  Google Scholar 

  26. Bowler NE, Arribas A, Beare SE, Mylne KR, Shutts GJ (2009) The local ETKF and SKEB: Upgrades to the MOGREPS short-range ensemble prediction system. Quart J Roy Meteor Soc 135:767–776

    Article  Google Scholar 

  27. Boyd J (1996) The Erfc-Log filter and the asymptotics of the Euler and Vandeven sum accelerations. In: Proc. of the Third International Conference on Spectral and High Order Methods, pp 267–276, ed. by A. V. Ilin and L. R. Scott, Houston J. Mathematics, Houston, Texas

    Google Scholar 

  28. Boyd J (1998) Two comments on filtering (artificial viscosity) for Chebyshev and Legendre spectral and spectral element methods: Preserving boundary conditions and interpretation of the filter as a diffusion. J Comput Phys 143:283–288

    Article  MATH  MathSciNet  Google Scholar 

  29. Burkhardt U, Becker E (2006) A consistent diffusion dissipation parameterization in the ECHAM climate model. Mon, Wea, Rev, 134:1194–1204

    Article  Google Scholar 

  30. Canuto C, Hussaini MY, Quarteroni A, Zang TA (1987) Spectral Methods in Fluid Dynamics. Springer, 600 pp.

    Google Scholar 

  31. Carpenter RL, Droegemeier KK, Woodward PR, Hane CE (1990) Application of the Piecewise Parabolic Method (PPM) to meteorological modeling. Mon Wea Rev 118:586–612

    Article  Google Scholar 

  32. Chen TC, Wiin-Nielsen A (1978) Nonlinear cascades of atmospheric energy and enstrophy in a two-dimensional spectral index. Tellus 30:313–322

    Article  Google Scholar 

  33. Colella P, Sekora MD (2008) A limiter for PPM that preserves accuracy at smooth extrema. J Comput Phys 227:7069–7076

    Article  MATH  MathSciNet  Google Scholar 

  34. Colella P, Woodward PR (1984) The Piecewise Parabolic Method (PPM) for gas-dynamical simulations. J Comput Phys 54:174–201

    Article  MATH  MathSciNet  Google Scholar 

  35. Collins WD, Rasch PJ, Boville BA, Hack JJ, McCaa JR, Williamson DL, Kiehl JT, Briegleb BP, Bitz CM, Lin SJ, Zhang M, Dai Y (2004) Description of the NCAR Community Atmosphere Model (CAM3.0). NCAR Technical Note NCAR/TN-464+STR, National Center for Atmospheric Research, Boulder, Colorado, 214 pp., available from http://www.ucar.edu/library/collections/technotes/technotes.jsp

  36. Cordero E, Staniforth A (2004) A problem with the Robert-Asselin time filter for three-time-level semi-implicit semi-Lagrangian discretizations. Mon Wea Rev 132:600–610

    Article  Google Scholar 

  37. Côté J, Gravel S, Staniforth A (1995) A generalized family of schemes that eliminate the spurious resonant response of semi-Lagrangian schemes to orographic forcing. Mon Wea Rev 123:3605–3613

    Article  Google Scholar 

  38. Côté J, Gravel S, Méthot A, Patoine A, Roch M, Staniforth A (1998a) The operational CMC-MRB Global Environmental Multiscale (GEM) model. Part I: Design considerations and formulation. Mon Wea Rev 126(6):1373–1395

    Google Scholar 

  39. Côté J, Gravel S, Méthot A, Patoine A, Roch M, Staniforth A (1998b) The operational CMC-MRB Global Environmental Multiscale (GEM) model. Part I: Design considerations and formulation. Mon Wea Rev 126(6):1373–1395

    Google Scholar 

  40. Davies T, Cullen MJP, Malcolm AJ, Mawson MH, Staniforth A, White AA, Wood N (2005) A new dynamical core for the Met Office’s global and regional modelling of the atmosphere. Quart J Roy Meteor Soc 131(608):1759–1782

    Article  Google Scholar 

  41. Deardorff JW (1970) A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. J Fluid Mechanics 41:453–480

    Article  MATH  Google Scholar 

  42. Déqué M, Cariolle D (1986) Some destabilizing properties of the Asselin time filter. Mon Wea Rev 114:880–884

    Article  Google Scholar 

  43. Dey CH (1978) Noise suppression in a primitive equation prediction model. Mon Wea Rev 106:159–173

    Article  Google Scholar 

  44. Doms G, Schättler U (2002) A description of the nonhydrostatic regional model LM. Part I: Dynamics and numerics. Consortium for Small-Scale Modelling (COSMO) LM F90 2.18, German Weather Service, Offenbach, Germany, 134 pp., available from http://www.cosmo-model.org

  45. Dubal M, Wood N, Staniforth A (2004) Analysis of parallel versus sequential splittings for time-stepping physical parameterizations. Mon Wea Rev 132:121–132

    Article  Google Scholar 

  46. Dubal M, Wood N, Staniforth A (2006) Some numerical properties of approaches to physics dynamics coupling for NWP. Quart J Roy Meteor Soc 132:27–42

    Article  Google Scholar 

  47. Dudhia J (1993) A nonhydrostatic version of the Penn State-NCAR mesoscale model: Validation tests and simulation of an Atlantic cyclone and cold front. Mon Wea Rev 121:1493–1513

    Article  Google Scholar 

  48. Durran DR (1999) Numerical methods for wave equations in geophysical fluid dynamics, First edn. Springer, 465 pp.

    Google Scholar 

  49. Durran DR (2010) Numerical methods for fluid dynamics: with applications in geophysics, Second edn. Springer, 516 pp.

    MATH  Google Scholar 

  50. Durran DR, Klemp JB (1983) A compressible model for the simulation of moist mountain waves. Mon Wea Rev 111:2341–2361

    Article  Google Scholar 

  51. ECMWF (2010) Part III: Dynamics and numerical procedures. IFS Documentation - Cy36r1, Operational implementation 26 January 2010, European Centre for Medium-Range Weather Forecasts, Shinfield Park, Reading, England, 29 pp., available from http://www.ecmwf.int/research/ifsdocs/CY36r1/index.html

  52. Enomoto T, Kuwano-Yoshida A, Komori N, Ohfuchi W (2008) Description of AFES 2: Improvements for high-resolution and coupled simulations. In: Hamilton K, Ohfuchi W (eds) High resolution numerical modelling of the atmosphere and ocean, Springer, pp 77–97

    Google Scholar 

  53. Farge M, Sadourny R (1989) Wave-vortex dynamics in rotating shallow water. J Fluid Mech 206:433–462

    Article  MATH  MathSciNet  Google Scholar 

  54. Fiedler BH (2000) Dissipative heating in climate models. Quart J Roy Meteor Soc 126:925–939

    Article  Google Scholar 

  55. Fox-Rabinovitz MS, Stenchikov GL, Suarez MJ, Takacs LL (1997) A finite-difference GCM dynamical core with a variable-resolution stretched grid. Mon Wea Rev 125:2943–2968

    Article  Google Scholar 

  56. Fudeyasu H, Wang Y, Satoh M, Nasuno T, Miura H, Yanase W (2008) Global cloud-system-resolving model NICAM successfully simulated the lifecycles of two real tropical cyclones. Geophys Res Lett 35:L22,808

    Google Scholar 

  57. Gassmann A, Herzog HJ (2007) A consistent time-split numerical scheme applied to the non-hydrostatic compressible equations. Mon Wea Rev 135:20–36

    Article  Google Scholar 

  58. Gelb A, Gleeson JP (2001) Spectral viscosity for shallow water equations in spherical geometry. Mon Wea Rev 129:2346–2360

    Article  Google Scholar 

  59. GFS (2003) The GFS atmospheric model. NCEP Office Note 442, National Centers for Environmental Prediction (NCEP), Environmental Modeling Center, Camp Springs, Maryland, 14 pp., available from http://www.emc.ncep.noaa.gov/officenotes/index.shtml see also http://wwwt.emc.ncep.noaa.gov/?branch=GFS

  60. Gill AE (1982) Atmosphere-ocean dynamics. Academic Press, 768 pp.

    Google Scholar 

  61. Giraldo FX, Rosmond TE (2004) A scalable Spectral Element Eulerian Atmospheric Model (SEE-AM) for NWP: Dynamical core tests. Mon Wea Rev 132:133–153

    Article  Google Scholar 

  62. Giraldo FX, Hesthaven JS, Wartburton T (2002) Nodal high-order discontinous Galerkin methods for the shallow water equations. J Comput Phys 181:499–525

    Article  MATH  MathSciNet  Google Scholar 

  63. Gordon CT, Stern WF (1982) A description of the GFDL global spectral model. Mon Wea Rev 110:625–644

    Article  Google Scholar 

  64. Gravel S, Staniforth A, Côté J (1993) A stability analysis of a family of baroclinic semi-Lagrangian forecast models. Mon Wea Rev 121:815–824

    Article  Google Scholar 

  65. Griffies SM, Hallberg RW (2000) Biharmonic friction with a Smagorinsky-like viscosity for use in large-scale Eddy-permitting ocean models. Mon Wea Rev 128:2935–2946

    Article  Google Scholar 

  66. Gross ES, Bonaventura L, Rosatti G (2002) Consistency with continuity in conservative advection schemes for free-surface models. Int J Numer Meth Fluids 38:307–327

    Article  MATH  Google Scholar 

  67. Haltiner GJ, Williams RT (1980) Numerical prediction and dynamic meteorology. John Wiley & Sons, 477 pp.

    Google Scholar 

  68. Hamilton K, Takahashi YO, Ohfuchi W (2008) Mesoscale spectrum of atmospheric motions investigated in a very fine resolution global general circulation model. J Geophys Res 113:D18,110

    Google Scholar 

  69. Hamming RW (1977) Digital filters. Prentice Hall, 226 pp.

    Google Scholar 

  70. Held IM, Suarez MJ (1994) A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models. Bull Amer Meteor Soc 75(10):1825–1830

    Article  Google Scholar 

  71. Hortal M (2002) The development and testing of a new two-time-level semi-Lagrangian scheme (SETTLS) in the ECMWF forecast model. Quart J Roy Meteor Soc 128(583):1671–1687

    Article  Google Scholar 

  72. Hortal M, Simmons AJ (1991) Use of reduced grids in spectral models. Mon Wea Rev 119:1057–1074

    Article  Google Scholar 

  73. Huang H, Stevens B, Margulis SA (2008) Application of dynamic subgrid-scale models for large-eddy simulation of the daytime convective boundary layer over heterogeneous surfaces. Boundary-Layer Meteorology 126:327–348

    Article  Google Scholar 

  74. Huynh HY (1996) Schemes and constraints for advection. In: 15th International Conference on Numerical Methods in Fluid Dynamics, Monterey June 24–28, 1996, CA, USA

    Google Scholar 

  75. Jablonowski C (1998) Test der Dynamik zweier globaler Wettervorhersagemodelle des Deutschen Wetterdienstes: Der Held-Suarez Test. Master’s thesis, University of Bonn, Germany, Department of Meteorology, 140 pp.

    Google Scholar 

  76. Jablonowski C (2004) Adaptive grids in weather and climate modeling. PhD thesis, University of Michigan, Ann Arbor, MI, Department of Atmospheric, Oceanic and Space Sciences, 292 pp.

    Google Scholar 

  77. Jablonowski C, Williamson DL (2006a) A baroclinic instabilitiy test case for atmospheric model dynamical cores. Quart J Roy Meteor Soc 132(621C):2943–2975

    Google Scholar 

  78. Jablonowski C, Williamson DL (2006b) A baroclinic wave test case for dynamical cores of General Circulation Models: Model intercomparisons. NCAR Tech. Note NCAR/TN-469 + STR, National Center for Atmospheric Research, Boulder, Colorado, 89 pp., available from http://www.ucar.edu/library/collections/technotes/technotes.jsp

  79. Jablonowski C, Herzog M, Penner JE, Oehmke RC, Stout QF, van Leer B, Powell KG (2006) Block-structured adaptive grids on the sphere: Advection experiments. Mon Wea Rev 134:3691–3713

    Article  Google Scholar 

  80. Jablonowski C, Oehmke RC, Stout QF (2009) Block-structured adaptive meshes and reduced grids for atmospheric general circulation models. Phil Trans R Soc A 367:4497–4522

    Article  MATH  MathSciNet  Google Scholar 

  81. Jakimow G, Yakimiw E, Robert A (1992) An implicit formulation for horizontal diffusion in gridpoint models. Mon Wea Rev 120:124–130

    Article  Google Scholar 

  82. Jakob R, Hack JJ, Williamson DL (1993) Solutions to the shallow-water test set using the spectral transform method. NCAR Tech. Note NCAR/TN-388+STR, National Center for Atmospheric Research, Boulder, Colorado, 82 pp., available from http://www.ucar.edu/library/collections/technotes/technotes.jsp

  83. Janjić ZI (1990) The step-mountain coordinate: Physical package. Mon Wea Rev 118:1429–1443

    Article  Google Scholar 

  84. Jöckel P, von Kuhlmann R, Lawrence MG, Steil B, Brenninkmelter CAM, Crutzen PJ, Rasch PJ, Eaton B (2001) On a fundamental problem in implementing flux-form advection schemes for tracer transport in 3-dimensional general circulation and chemistry transport models. Quart J Roy Meteor Soc 127:1035–1052

    Google Scholar 

  85. Kalnay E (2003) Atmospheric modeling, data assimilation and predictability. Cambridge University Press, 341 pp.

    Google Scholar 

  86. Kalnay-Rivas E, Bayliss A, Storch J (1977) The 4th order GISS model of the global atmosphere. Beiträge zur Physik der Atmosphäre 50:299–311

    Google Scholar 

  87. Kasahara A (1974) Various vertical coordinate systems used for numerical weather prediction. Mon Wea Rev 102:509–522

    Article  Google Scholar 

  88. Klemp JB, Durran DR (1983) An upper boundary condition permitting internal gravity wave radiation in numerical mesoscale models. Mon Wea Rev 111:430–444

    Article  Google Scholar 

  89. Klemp JB, Lilly DK (1978) Numerical simulation of hydrostatic mountain waves. J Atmos Sci 35:78–107

    Article  Google Scholar 

  90. Klemp JB, Skamarock WC, Dudhia J (2007) Conservative split-explicit time integration methods for the compressible nonhydrostatic equations. Mon Wea Rev 135:2897–2913

    Article  Google Scholar 

  91. Klemp JB, Dudhia J, Hassiotis AD (2008) An upper gravity-wave absorbing layer for NWP applications. Mon Wea Rev 136:3987–4004

    Article  Google Scholar 

  92. Knievel JC, Bryan GH, Hacker JP (2007) Explicit numerical diffusion in the WRF model. Mon Wea Rev 135:3808–3824

    Article  Google Scholar 

  93. Koshyk JN, Boer GJ (1995) Parameterization of dynamical subgrid-scale processes in a spectral GCM. J Atmos Sci 52(7):965–976

    Article  Google Scholar 

  94. Koshyk JN, Hamilton K (2001) The horizontal kinetic energy spectrum and spectral budget simulated by a high-resolution troposphere-stratosphere-mesosphere GCM. J Atmos Sci 58:329–348

    Article  Google Scholar 

  95. Lander J, Hoskins BJ (1997) Believable scales and parameterizations in a spectral transform model. Mon Wea Rev 125:292–303

    Article  Google Scholar 

  96. Laprise R, Girard C (1990) A spectral General Circulation Model using the piecewise-constant finite-element representation on a hybrid vertical coordinate system. J Climate 3:32–52

    Article  Google Scholar 

  97. Lauritzen PH, Jablonowski C, Taylor MA, Nair RD (2010a) Rotated versions of the Jablonowski steady-state and baroclinic wave test cases: A dynamical core intercomparison. In press, Journal of Advances in Modeling Earth Systems (JAMES), paper available from http://adv-model-earth-syst.org/

  98. Lauritzen PH, Nair RD, Ullrich PA (2010b) A conservative semi-Lagrangian multi-tracer transport scheme (CSLAM) on the cubed-sphere grid. J Comput Phys 229:1401–1424

    Article  MATH  MathSciNet  Google Scholar 

  99. Laursen L, Eliasen E (1989) On the effects of the damping mechanisms in an atmospheric general circulation model. Tellus Series A 41:385–400

    Article  Google Scholar 

  100. van Leer B (1974) Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme. J Comput Phys 14:361–370

    Google Scholar 

  101. van Leer B (1977) Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection. J Comput Phys 23:276–299

    Google Scholar 

  102. Leith CE (1971) Atmospheric predictability and two-dimensional turbulence. J Atmos Sci 28: 145–161

    Article  Google Scholar 

  103. LeVeque RJ (2002) Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, ISBN 0-521-00924-3, 558 pp.

    Google Scholar 

  104. Li Y, Moorthi S, Bates JR (1994) Direct solution of the implicit formulation of fourth order horizontal diffusion for gridpoint models on the sphere. NASA Technical Memorandum 104606, Vol. 2, NASA Goddard Space Flight Center, Greenbelt, Maryland, 42 pp.

    Google Scholar 

  105. Lin SJ (2004) A “vertically Lagrangian” finite-volume dynamical core for global models. Mon Wea Rev 132:2293–2307

    Article  Google Scholar 

  106. Lin SJ, Rood RB (1996) Multidimensional flux-form semi-Lagrangian transport scheme. Mon Wea Rev 124:2046–2070

    Article  Google Scholar 

  107. Lin SJ, Rood RB (1997) An explicit flux-form semi-Lagrangian shallow water model on the sphere. Quart J Roy Meteor Soc 123:2477–2498

    Article  Google Scholar 

  108. Lin YL (2007) Mesoscale dynamics. Cambridge University Press, 630 pp.

    Google Scholar 

  109. Lindberg K, Alexeev VA (2000) A study of the spurious orographic resonance in semi-implicit semi-Lagrangian models. Mon Wea Rev 128:1982–1989

    Article  Google Scholar 

  110. Lynch P, Huang X (1992) Initialization of the HIRLAM model using a digital filter. Mon Wea Rev 120:1019–1034

    Article  Google Scholar 

  111. Machenhauer B (1979) The spectral method. In: Kasahara A (ed) Numerical methods used in atmospheric models, vol 2, GARP Publications Series No 17, WMO and ICSU, Geneva, pp 121–275

    Google Scholar 

  112. MacVean MK (1983) The effects of horizontal diffusion on baroclinic development in a spectral model. Quart J Roy Meteor Soc 109:771–783

    Article  Google Scholar 

  113. Mahlmann JD, Sinclair WW (1977) Tests of various numerical algorithms applied to a simple trace constituent air transport problem. In: Suffett IH (ed) Advances in Environmental Science and Technology, Part 1: The Fate of Pollutants in the Air and Water Environments, vol 8, Wiley, pp 223–252

    Google Scholar 

  114. Majewski D, Liermann D, Prohl P, Ritter B, Buchhold M, Hanisch T, Paul G, Wergen W, Baumgardner J (2002) The operational global icosahedral-hexagonal gridpoint model GME: Description and high-resolution tests. Mon Wea Rev 130:319–338

    Article  Google Scholar 

  115. Majewski D, Frank H, Liermann D (2008) GME User’s Guide. Tech. Rep. corresponding to model version gmtri 2.17 and higher, German Weather Service DWD, Frankfurt, Germany, 70 pp.

    Google Scholar 

  116. McCorquodale P, Colella P (2010) A high-order finite-volume method for hyperbolic conservation laws on locally-refined grids. J. Comput. Phys., in review

    Google Scholar 

  117. McDonald A, Haugen J (1992) A two-time-level, three-dimensional semi-Lagrangian, semi-implicit, limited-area gridpoint model of the primitive equations. Mon Wea Rev 120(11):2603–2621

    Article  Google Scholar 

  118. McDonald A, Haugen J (1993) A two time-level, three-dimensional, semi-Lagrangian, semi-implicit, limited-area gridpoint model of the primitive equations. Part II: Extension to hybrid vertical coordinates. Mon Wea Rev 121(7):2077–2087

    Google Scholar 

  119. McPherson RD, Stackpole JD (1973) Noise suppression in the eight-layer global model. Office Note 83, U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Weather Service, National Meteorological Center, 36 pp., available from http://www.emc.ncep.noaa.gov/officenotes/index.shtml

  120. Mellor GL (1985) Ensemble average, turbulence closure. In: Manabe S (ed) Advances in Geophysics, Issues in Atmos. and Ocean Modeling. Part B: Weather Dynamics, Academic Press, pp 345–357

    Google Scholar 

  121. Mesinger F, Arakawa A (1976) Numerical methods used in atmospheric models. In: GARP Publication Series No. 17, vol 1, World Meteorological Organization, p 64, Geneva, Switzerland

    Google Scholar 

  122. Mesinger F, Jovic D (2002) The Eta slope adjustment: Contender for an optimal steepening in a piecewise-linear advection scheme? Comparison tests. NCEP Office Note 439, National Centers for Environmental Prediction (NCEP), Environmental Modeling Center, Camp Springs, Maryland, 29 pp., available from http://www.emc.ncep.noaa.gov/officenotes/index.shtml

  123. Nair RD (2009) Diffusion experiments with a global discontinuous Galerkin shallow-water model. Mon Wea Rev 137:3339–3350

    Article  Google Scholar 

  124. Nastrom GD, Gage KS (1985) A climatology of atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft. J Atmos Sci 42:950–960

    Article  Google Scholar 

  125. Neale RB, Hoskins BJ (2000) A standard test for AGCMs including their physical parameterizations: I: The proposal. Atmos Sci Lett 1:101–107

    Article  Google Scholar 

  126. Neale RB, Chen CC, Gettelman A, Lauritzen PH, Park S, Williamson DL, Conley AJ, Garcia R, Kinnison D, Lamarque JF, Marsh D, Mills M, Smith AK, Tilmes S, Vitt F, Cameron-Smith P, Collins WD, Iacono MJ, Rasch PJ, Taylor M (2010) Description of the NCAR Community Atmosphere Model (CAM 5.0). NCAR Technical Note NCAR/TN-XXX+STR, National Center for Atmospheric Research, Boulder, Colorado, draft, available from http://www.cesm.ucar.edu/models/cesm1.0/cam/

  127. Nelson SP, Weible ML (1980) Three-dimensional Shuman filter. J Appl Meteor 19:464–469

    Article  Google Scholar 

  128. Orr A, Wedi N (2009) The representation of non-orographic gravity waves in the IFS Part I: Assessment of the middle atmosphere climate with Rayleigh friction. ECMWF Technical Memorandum 592, European Centre for Medium-Range Weather Forecasts, Reading, U.K., 15 pp., available from http://www.ecmwf.int/publications/library/do/references/list/14

  129. Orr A, Bechthold P, Scinocca J, Ern M, Janiskova M (2010) Improved middle atmosphere climate and forecasts in the ECMWF model through a non-orographic gravity wave drag parameterization. J. Climate, in press

    Google Scholar 

  130. Orszag SA (1971) On the elimination of aliasing in finite-difference schemes by filtering high-wavenumber components. J Atmos Sci 28:1074–1074

    Article  Google Scholar 

  131. O’Sullivan D, Dunkerton TJ (1995) Generation of inertia-gravity waves in a simulated life cycle of baroclinic instability. J Atmos Sci 52:3695–3716

    Article  Google Scholar 

  132. Phillips N (1959) An example of non-linear computational instability. In: Bolin B (ed) The Atmosphere and Sea in Motion, Oxford University Press, pp 501–504

    Google Scholar 

  133. Phillips NA (1957) A coordinate system having some special advantages for numerical forecasting. J Meteor 14:184–185

    Article  Google Scholar 

  134. Polvani LM, Kushner PJ (2002) Tropospheric response to stratospheric perturbations in a relatively simple general circulation model. Geophys Res Lett 29(7):070,000–1

    Google Scholar 

  135. Polvani LM, Scott RK, Thomas SJ (2004) Numerically converged solutions of the global primitive equations for testing the dynamical core of atmospheric GCMs. Mon Wea Rev 132:2539–2552

    Article  Google Scholar 

  136. Purser RJ (1987) The filtering of meteorological fields. J Climate and Appl Meteor 26:1764–1769

    Article  Google Scholar 

  137. Purser RJ (1988) Degradation of numerical differencing caused by Fourier filtering at high latitudes. Mon Wea Rev 116:1057–1066

    Article  Google Scholar 

  138. Purser RJ, Leslie LM (1994) An efficient semi-Lagrangian scheme using third-order semi-implicit time integration and forward trajectories. Mon Wea Rev 122(4):745–756

    Article  Google Scholar 

  139. Putman WM, Lin SJ (2007) Finite-volume transport on various cubed-sphere grids. J Comput Phys 227:55–78

    Article  MATH  MathSciNet  Google Scholar 

  140. Putman WM, Lin SJ (2009) A finite-volume dynamical core on the cubed-sphere grid. In: Numerical Modeling of Space Plasma Flows: Astronum-2008, Astronomical Society of the Pacific Conference Series, vol 406, pp 268–276

    Google Scholar 

  141. Randall DA (1994) Geostrophic adjustment and the finite-difference shallow-water equations. Mon Wea Rev 122:1371–1377

    Article  Google Scholar 

  142. Rasch PJ (1986) Toward atmospheres without tops: Absorbing upper boundary conditions for numerical models. Quart J Roy Meteor Soc 112:1195–1218

    Article  Google Scholar 

  143. Rasch PJ, Williamson DL (1990a) Computational aspects of moisture transport in global models of the atmosphere. Quart J Roy Meteor Soc 116:1071–1090

    Article  Google Scholar 

  144. Rasch PJ, Williamson DL (1990b) On shape-preserving interpolation and semi-Lagrangian transport. SIAM J Sci Stat Comput 11(4):656–687

    Article  MATH  MathSciNet  Google Scholar 

  145. Rasch PJ, Williamson DL (1991) The sensitivity of a general circulation model climate to the moisture transport formulation. J Geophy Res 96:13,123–13,137

    Google Scholar 

  146. Rasch PJ, Boville BA, Brasseur GP (1995) A three-dimensional general circulation model with coupled chemistry for the middle atmosphere. J Geophys Res 100:9041–9072

    Article  Google Scholar 

  147. Raymond WH (1988) High-order low-pass implicit tangent filters for use in finite area calculations. Mon Wea Rev 116:2132–2141

    Article  Google Scholar 

  148. Raymond WH, Garder A (1988) A spatial filter for use in finite area calculations. Mon Wea Rev 116:209–222

    Article  Google Scholar 

  149. Raymond WH, Garder A (1991) A review of recursive and implicit filters. Mon Wea Rev 119: 477–495

    Article  Google Scholar 

  150. Reames FM, Zapotocny TH (1999) Inert trace constituent transport in sigma and hybrid isentropic-sigma models. Part I: Nine advection algorithms. Mon Wea Rev 127:173–187

    Google Scholar 

  151. Rienecker MM, Suarez MJ, Todling R, Bacmeister J, Takacs L, Liu HC, Gu W, Sienkiewicz M, Koster RD, Gelaro R, Stajner I, Nielsen E (2008) The GEOS-5 data assimilation system – Documentation of versions 5.0.1 and 5.1.0. Technical Report Series on Global Modeling and Data Assimilation NASA/TM-2007-104606, Vol. 27, NASA Goddard Space Flight Center, Greenbelt, Maryland, 92 pp.

    Google Scholar 

  152. Rípodas P, Gassmann A, Förstner J, Majewski D, Giorgetta M, Korn P, Kornblueh L, Wan H, Zängl G, Bonaventura L, Heinze T (2009) Icosahedral Shallow Water Model (ICOSWM): results of shallow water test cases and sensitivity to model parameters. Geosci Model Dev 2:231–251

    Article  Google Scholar 

  153. Ritchie H, Temperton C, Simmons A, Hortal M, Davies T, Dent D, Hamrud M (1995) Implementation of the Semi-Lagrangian Method in a High-Resolution Version of the ECMWF Forecast Model. Mon Wea Rev 123:489–514

    Article  Google Scholar 

  154. Rivest C, Staniforth A, Robert A (1994) Spurious resonant response of semi-Lagrangian discretizations to orographic forcing: Diagnosis and solution. Mon Wea Rev 122:366–376

    Article  Google Scholar 

  155. Robert A, Lépine M (1997) Anomaly in the behaviour of the time filter used with the leapfrog scheme in atmospheric models. In: Lin CA, Laprise R, Ritchie H (eds) Numerical Methods in Atmospheric and Oceanic Modeling: The André J. Robert Memorial Volume, Canadian Meteorological and Oceanographic Society / NRC Research Press, pp S3–S15

    Google Scholar 

  156. Robert AJ (1966) The Integration of a low order spectral form of the primitive meteorological equations. J Meteor Soc Japan 44(5):237–245

    Google Scholar 

  157. Roeckner E, Bäuml G, Bonaventura L, Brokopf R, Esch M, Hagemann MGS, Kirchner I, Kornblueh L, Manzini E, Rhodin A, Schlese U, Schulzweida U, Tompkins A (2003) The atmospheric general circulation model ECHAM5. Part I model description. Tech. Rep. 349, Max Planck Institute for Meteorology, 127 pp., available from http://www.mpimet.mpg.de/en/wissenschaft/modelle/echam/echam5.html

  158. Rood RB (1987) Numerical advection algorithms and their role in atmospheric transport and chemistry models. Rev Geophys 25:71–100

    Article  Google Scholar 

  159. Royer J (1986) Correction of negative mixing ratios in spectral models by global horizontal borrowing. Mon Wea Rev 114:1406–1410

    Article  Google Scholar 

  160. Ruge JW, McCormick SF, Yee SYK (1995) Multilevel adaptive methods for semi-implicit solution of shallow-water equations on the sphere. Mon Wea Rev 123:2197–2205

    Article  Google Scholar 

  161. Sadourny R (1975) The dynamics of finite-difference models of the shallow-water equations. J Atmos Sci 32:680–689

    Article  Google Scholar 

  162. Sadourny R, Maynard K (1997) Formulations of lateral diffusion in geophysical fluid dynamics models. In: Lin CA, Laprise R, Ritchie H (eds) Numerical Methods in Atmospheric and Oceanic Modeling: The André J. Robert Memorial Volume, Canadian Meteorological and Oceanographic Society / NRC Research Press, pp 547–556

    Google Scholar 

  163. Sardeshmukh PD, Hoskins BI (1984) Spatial smoothing on the sphere. Mon Wea Rev 112:2524–2529

    Article  Google Scholar 

  164. Satoh M (2002) Conservative scheme for the compressible nonhydrostatic models with the horizontally explicit and vertically implicit time integration scheme. Mon Wea Rev 130(5):1227–1245

    Article  Google Scholar 

  165. Satoh M (2003) Conservative scheme for a compressible nonhydrostatic model with moist processes. Mon Wea Rev 131:1033–1050

    Article  Google Scholar 

  166. Satoh M (2004) Atmospheric circulation dynamics and general circulation models. Springer (Praxis), 643 pp.

    Google Scholar 

  167. Satoh M, Matsuno T, Tomita H, Miura H, Nasuno T, Iga S (2008) Nonhydrostatic icosahedral atmospheric model (NICAM) for global cloud resolving simulations. J Comput Phys 227:3486–3514

    Article  MATH  MathSciNet  Google Scholar 

  168. Schlesinger RE, Uccellini LW, Johnson DR (1983) The effects of the Asselin time filter on numerical solutions to the linearized shallow-water wave equations. Mon, Wea, Rev, 111:455–467

    Article  Google Scholar 

  169. Schmidt GA, Ruedy R, Hansen JE, Aleinov I, Bell N, Bauer M, Bauer S, Cairns B, Canuto V, Cheng Y, Del Genio A, Faluvegi G, Friend AD, Hall TM, Hu Y, Kelley M, Kiang NY, Koch D, Lacis AA, Lerner J, Lo KK, Miller RL, Nazarenko L, Oinas V, Perlwitz J, Perlwitz J, Rind D, Romanou A, Russell GL, Sato M, Shindell DT, Stone PH, Sun S, Tausnev N, Thresher D, Yao MS (2006) Present-day atmospheric simulations using GISS ModelE: Comparison to in situ, satellite, and reanalysis data. J Climate 19:153–192

    Article  Google Scholar 

  170. Shapiro R (1970) Smoothing, filtering, and boundary effects. Rev Geophys and Space Phys 8(2):359–387

    Article  Google Scholar 

  171. Shapiro R (1971) The use of linear filtering as a parameterization of atmospheric diffusion. J Atmos Sci 28:523–531

    Article  Google Scholar 

  172. Shapiro R (1975) Linear filtering. Mathematics of Computation 29(132):1094–1097

    Article  MATH  MathSciNet  Google Scholar 

  173. Shepherd TG, Shaw TA (2004) The angular momentum constraint on climate sensitivity and downward Influence in the middle atmosphere. J Atmos Sci 61:2899–2908

    Article  MathSciNet  Google Scholar 

  174. Shepherd TG, Semeniuk K, Koshyk JN (1996) Sponge layer feedbacks in middle-atmosphere models. J Geophys Res 101:23,447–23,464

    Google Scholar 

  175. Shuman FG (1957) Numerical methods in weather prediction: II. Smoothing and filtering. Mon Wea Rev 85:357–361

    Article  Google Scholar 

  176. Shuman FG (1969) On a special form for viscous terms. Office Note 32, U.S. Department of Commerce, Environmental Science Service Administration, Weather Bureau, 4 pp., available from http://www.emc.ncep.noaa.gov/officenotes/index.shtml

  177. Shuman FG, Stackpole JD (1969) The currently operational NMC model, and results of a recent numerical experiment. In: Proc. WMO/IUGG Symp. Numerical Weather Prediction, Japan Meteorological Agency, Tokyo, Japan, pp II–85–98

    Google Scholar 

  178. Shutts G (2005) A kinetic energy backscatter algorithm for use in ensemble prediction systems. Quart J Roy Meteor Soc 131:3079–3102

    Article  Google Scholar 

  179. Simmons AJ, Burridge DM (1981) An energy and angular-momentum conserving vertical finite-difference scheme and hybrid vertical coordinates. Mon Wea Rev 109:758–766

    Article  Google Scholar 

  180. Skamarock WC (2004) Evaluating mesoscale NWP models using kinetic energy spectra. Mon Wea Rev 132:3019–3032

    Article  Google Scholar 

  181. Skamarock WC, Klemp JB (1992) The stability of time-split numerical methods for the hydrostatic and the nonhydrostatic elastic equations. Mon Wea Rev 120:2109–2127

    Article  Google Scholar 

  182. Skamarock WC, Klemp JB (2008) A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J Comput Phys 227:3465–3485

    Article  MATH  MathSciNet  Google Scholar 

  183. Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Duda MG, Huang XY, Wang W, Powers JG (2008) A description of the Advanced Research WRF Version 3. NCAR Tech. Note NCAR/TN-475 + STR, National Center for Atmospheric Research, Boulder, Colorado, 113 pp., available from http://www.ucar.edu/library/collections/technotes/technotes.jsp

  184. Smagorinsky J (1963) General circulation experiments with the primitive equations. I. The basic experiment. Mon Wea Rev 91:99–164

    Article  Google Scholar 

  185. Smagorinsky J (1993) Some historical remarks on the use of nonlinear viscosities. In: Galperin B, Orszag SA (eds) Large Eddy Simulation of Complex Engineering and Geophysical Flows, Cambridge University Press, pp 3–36

    Google Scholar 

  186. St-Cyr A, Jablonowski C, Dennis J, Thomas S, Tufo H (2008) A comparison of two shallow water models with non-conforming adaptive grids. Mon Wea Rev 136:1898–1922

    Article  Google Scholar 

  187. Staniforth A, Côté J (1991) Semi-Lagrangian integration schemes for atmospheric modeling - A review. Mon Wea Rev 119:2206–2223

    Article  Google Scholar 

  188. Staniforth A, Wood N (2008) Aspects of the dynamical core of a nonhydrostatic, deep-atmosphere, unified weather and climate-prediction model. J Comput Phys 227(7):3445–3464

    Article  MATH  MathSciNet  Google Scholar 

  189. Staniforth A, White A, Wood N (2003) Analysis of semi-Lagrangian trajectory computations. Quart J Roy Meteor Soc 129(591):2065–2085

    Article  Google Scholar 

  190. Staniforth A, White A, Wood N, Thuburn J, Zerroukat M, Cordero E, Davies T, Diamantakis M (2006) Joy of U.M. 6.3 - model formulation. Unified Model Documentation Paper No 15, UK Meteorological Service, Exeter, England, available from http://research.metoffice.gov.uk/research/nwp/publications/papers/unified\_model/

  191. Stephenson DB (1994) The impact of changing the horizontal diffusion scheme on the northern winter climatology of a general circulation model. Quart J Roy Meteor Soc 120:211–226

    Article  Google Scholar 

  192. Suarez MJ, Takacs LL (1995) Documentation of the ARIES/GEOS dynamical core: Version 2. NASA Technical Memorandum 104606, Vol. 5, NASA Goddard Space Flight Center, Greenbelt, Maryland, 45 pp.

    Google Scholar 

  193. Takacs L, Sawyer W, Suarez MJ, Fox-Rabnovitz MS (1999) Filtering techniques on a stretched grid general circulation model. Tech. Rep. NASA/TM-1999-104606, Vol. 16, NASA Goddard Space Flight Center, Greenbelt, Maryland, 50 pp.

    Google Scholar 

  194. Takacs LL (1988) Effect of using a posteriori methods for the conservation of integral invariants. Mon Wea Rev 116:525–545

    Article  Google Scholar 

  195. Takacs LL, Balgovind RC (1983) High-latitude filtering in global grid-point models. Mon Wea Rev 111:2005–2015

    Article  Google Scholar 

  196. Takahashi YO, Hamilton K, Ohfuchi W (2006) Explicit global simulation of the mesoscale spectrum of atmospheric motions. Geophys Res Lett 33:L12,812

    Google Scholar 

  197. Tandon MK (1987) Robert’s recursive frequency filter: A reexamination. Meteor Atmos Phys 37:48–59

    Article  Google Scholar 

  198. Tanguay M, Yakimiw E, Ritchie H, Robert A (1992) Advantages of spatial averaging in semi-implicit semi-Lagrangian schemes. Mon Wea Rev 120:113–123

    Article  Google Scholar 

  199. Tatsumi Y (1983) An economical explicit time integration scheme for a primitive model. J Meteorol Soc Japan 61:269–287

    Google Scholar 

  200. Taylor M, Tribbia J, Iskandarani M (1997) The spectral element method for the shallow water equations on the sphere. J Comput Phys 130:92–108

    Article  MATH  Google Scholar 

  201. Taylor MA (2008) CAM/HOMME: Parallel scalability and aqua planet results for CAM on the cubed-sphere grid. Presentation at the Community Climate System Model (CCSM) Workshop in Breckenridge, CO, available online at http://www.ccsm.ucar.edu/events/ws.2008/Presentations/Tarn/SEWG/Taylor\_ccsm08.pdf

  202. Taylor MA, Fournier A (2010) A compatible and conservative spectral element method on unstructured grids. J Comput Phys 229:5879–5895

    Article  MATH  MathSciNet  Google Scholar 

  203. Taylor MA, Edwards J, Thomas S, Nair RD (2007) A mass and energy conserving spectral element atmospheric dynamical core on the cubed-sphere grid. Journal of Physics: Conference Series 78:012,074, available online at http://www.iop.org/EJ/toc/1742-6596/78/1

  204. Taylor MA, A S, Fournier A (2009) A non-oscillatory advection operator for the compatible spectral element method. In: Allen G (ed) Computational Science Ð ICCS 2009, Part II, Lecture Notes in Computer Science, vol 5545, Springer Berlin/Heidelberg, pp 273–282

    Google Scholar 

  205. Temperton C, Staniforth A (1987) An efficient two-time-level semi-Lagrangian semi-implicit integration scheme. Quart J Roy Meteor Soc 113:1025–1039

    Article  Google Scholar 

  206. Terasaki K, Tanaka HL, Satoh M (2009) Characteristics of the kinetic energy spectrum of NICAM model atmosphere. SOLA 5:180–183

    Article  Google Scholar 

  207. Thomas SJ, Loft RD (2005) The NCAR spectral element climate dynamical core: Semi-implicit Eulerian formulation. J Sci Comput 25:307–322

    MATH  MathSciNet  Google Scholar 

  208. Thuburn J (1993) Use of a flux-limited scheme for vertical advection in a GCM. Quart J Roy Meteor Soc 119:469–487

    Article  Google Scholar 

  209. Thuburn J (1997) TVD Schemes, Positive Schemes, and the Universal Limiter. Mon Wea Rev 125:1990–1993

    Article  Google Scholar 

  210. Thuburn J (2008a) Numerical wave propagation on the hexagonal C-grid. J Comput Phys 227:5836–5858

    Article  MATH  MathSciNet  Google Scholar 

  211. Thuburn J (2008b) Some conservation issues for dynamical cores of NWP and climate models. J Comput Phys 227(7):3715–3730

    Article  MATH  MathSciNet  Google Scholar 

  212. Tomita H, Satoh M (2004) A new dynamical framework of nonhydrostatic global model using the icosahedral grid. Fluid Dyn Res 34:357–400

    Article  MATH  MathSciNet  Google Scholar 

  213. Tomita H, Miura H, Iga S, Nasuno T, Satoh M (2005) A global cloud-resolving simulation: Preliminary results from an aqua planet experiment. Geophys Res Lett 32:L08,805

    Google Scholar 

  214. Untch A, Hortal M (2004) A finite-element scheme for the vertical discretization of the semi-Lagrangian version of the ECMWF forecast model. Quart J Roy Meteor Soc 130:1505–1530

    Article  Google Scholar 

  215. Vandeven H (1991) Family of spectral filters for discontinuous problems. J Sci Comput 6:159–192

    Article  MATH  MathSciNet  Google Scholar 

  216. Váňa F, Bénard P, Geleyn J, Simon A, Seity Y (2008) Semi-Lagrangian advection scheme with controlled damping: An alternative to nonlinear horizontal diffusion in a numerical weather prediction model. Quart J Roy Meteor Soc 134:523–537

    Article  Google Scholar 

  217. von Storch J (2004) On statistical dissipation in GCM-climate. Climate Dynamics 23:1–15

    Google Scholar 

  218. Wan H (2009) Developing and testing a hydrostatic atmospheric dynamical core on triangular grids. Reports on Earth System Science 65, Max Planck Institute for Meteorology, Hamburg, Germany, 153 pp., available from http://www.mpimet.mpg.de/en/wissenschaft/publikationen/berichte-erdsystemforschung.html

  219. Wan H, Giorgetta MA, Bonaventura L (2008) Ensemble Held Suarez test with a spectral transform model: Variability, sensitivity, and convergence. Mon Wea Rev 136:1075–1092

    Article  Google Scholar 

  220. Washington WM, Baumhefner DP (1975) A method of removing Lamb waves from initial data for primitive equation models. J Appl Meteor 14:114–119

    Article  Google Scholar 

  221. White AA, B J Hoskins IR, Staniforth A (2005) Consistent approximate models of the global atmosphere: shallow, deep, hydrostatic, quasi-hydrostatic and non-hydrostatic. Quart J Roy Meteor Soc 131:2081–2107

    Article  Google Scholar 

  222. Whitehead J, Jablonowski C, Rood RB, Lauritzen PH (2011) A stability analysis of divergence damping on a latitude-longitude grid. Mon. Wea. Rev., accepted (pending revisions)

    Google Scholar 

  223. Williams PD (2009) A proposed modification to the Robert-Asselin time filter. Mon Wea Rev 137:2538–2546

    Article  Google Scholar 

  224. Williamson DL (1976) Linear stability of finite-difference approximations on a uniform latitude-longitude grid with Fourier filtering. Mon Wea Rev 104:31–41

    Article  Google Scholar 

  225. Williamson DL (1978) The Relative Importance of Resolution, Accuracy and Diffusion in Short-Range Forecasts with the NCAR Global Circulation Model. Mon Wea Rev 106:69–88

    Article  Google Scholar 

  226. Williamson DL (1988) The effect of vertical finite difference approximations on simulations with the NCAR Community Climate Model. J Climate 1(1):40–58

    Article  Google Scholar 

  227. Williamson DL (1990) Semi-Lagrangian moisture transport in the NMC spectral model. Tellus 42A:413–428

    Google Scholar 

  228. Williamson DL (1997) Climate simulations with a spectral, semi-Lagrangian model with linear grids. In: Lin CA, Laprise R, Ritchie H (eds) Numerical Methods in Atmospheric and Oceanic Modeling: The André J. Robert Memorial Volume, Canadian Meteorological and Oceanographic Society / NRC Research Press, pp 280–292

    Google Scholar 

  229. Williamson DL (2007) The evolution of dynamical cores for global atmospheric models. J Meteorol Soc Japan 85B:241–269

    Article  Google Scholar 

  230. Williamson DL (2008a) Convergence of aqua-planet simulations with increasing resolution in the Community Atmospheric Model, Version3. Tellus 60A:848–862

    Google Scholar 

  231. Williamson DL (2008b) Equivalent finite volume and Eulerian spectral transform horizontal resolutions established from aqua-planet simulations. Tellus 60A:839–847

    Google Scholar 

  232. Williamson DL, Browning GL (1973) Comparison of grids and difference approximations for numerical weather prediction over the sphere. J Appl Meteor 12:264–274

    Article  Google Scholar 

  233. Williamson DL, Laprise R (2000) Numerical approximations for global atmospheric general circulation models. In: Mote P, O’Neill A (eds) Numerical modeling of the global atmosphere in the climate system, NATO Science Series C: Mathematical and Physical Sciences, vol 550, Kluwer Academic Publishers, pp 127–219

    Google Scholar 

  234. Williamson DL, Olson J (1994) Climate simulations with a semi-Lagrangian version of the NCAR Community Climate Model. Mon Wea Rev 122(7):1594–1610

    Article  Google Scholar 

  235. Williamson DL, Rasch PJ (1989) Two-dimensional semi-Lagrangian transport with shape-preserving interpolation. Mon Wea Rev 117:102–129

    Article  Google Scholar 

  236. Williamson DL, Rasch PJ (1994) Water vapor transport in the NCAR CCM2. Tellus A 46:34–51

    Article  Google Scholar 

  237. Williamson DL, Drake JB, Hack JJ, Jakob R, Swarztrauber PN (1992) A standard test set for numerical approximations to the shallow water equations in spherical geometry. J Comput Phys 102:211–224

    Article  MATH  MathSciNet  Google Scholar 

  238. Williamson DL, Olson JG, Boville BA (1998) A comparison of semi-Lagrangian and Eulerian tropical climate simulations. Mon Wea Rev 126:1001–1012

    Article  Google Scholar 

  239. Williamson DL, Olson J, Jablonowski C (2009) Two dynamical core formulation flaws exposed by a baroclinic instability test case. Mon Wea Rev 137:790–796

    Article  Google Scholar 

  240. Wood N, Diamantakis M, Staniforth A (2007) A monotonically-damping second-order-accurate unconditionally-stable numerical scheme for diffusion. Quart J Roy Meteor Soc 133:1559–1573

    Article  Google Scholar 

  241. Xue M (2000) High-order monotonic numerical diffusion and smoothing. Mon Wea Rev 128:2853–2864

    Article  Google Scholar 

  242. Xue M, Droegemeier KK, Wong V (2000) The Advanced Regional Prediction System (ARPS) - A multi-scale nonhydrostatic atmospheric simulation and prediction model. Part I: Model dynamics and verification. Meteor Atmos Phys 75:161–193

    Google Scholar 

  243. Zalesak ST (1979) Fully multidimensional flux-corrected transport algorithms for fluids. J Comput Phys 31:335–362

    Article  MATH  MathSciNet  Google Scholar 

  244. Zubov VA, Rozanov EV, Schlesinger ME (1999) Hybrid scheme for three-dimensional advective transport. Mon Wea Rev 127:1335–1346

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Jerry Olson (NCAR) for developing the required semi-Lagrangian CAM 3.1 codes and for running the experiments required in Sects. ?? and ??. We would also like to thank Mike Blackburn (University of Reading) for discussions on the University of Reading spectral model and for pointing out relevant papers. We thank Fedor Mesinger (NCEP) and the second reviewer for their very insightful suggestions. DLW was partially supported by the Office of Science (BER), U.S. Department of Energy, Cooperative Agreement No. DE-FC02-97ER62402. CJ was supported by the Office of Science (BER), U.S. Department of Energy, Award No. DE-FG02-07ER64446. The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christiane Jablonowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jablonowski, C., Williamson, D.L. (2011). The Pros and Cons of Diffusion, Filters and Fixers in Atmospheric General Circulation Models. In: Lauritzen, P., Jablonowski, C., Taylor, M., Nair, R. (eds) Numerical Techniques for Global Atmospheric Models. Lecture Notes in Computational Science and Engineering, vol 80. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11640-7_13

Download citation

Publish with us

Policies and ethics