Skip to main content

Inviscid Potential Flows

  • Chapter
  • 9114 Accesses

Abstract

As discussed in Chapter 4, generally the motion of fluids encountered in engineering applications is described by the Navier-Stokes equations. Considering today’s computational fluid dynamics capabilities, it is possible to numerically solve the Navier- Stokes equations for laminar flows (no turbulent fluctuations), transitional flows (using appropriate intermittency models), and turbulent flow (utilizing appropriate turbulence models). Given today’s computational capabilities, one may argue at this juncture that there is no need to artificially subdivide the flow regime into different categories such as incompressible, compressible, viscid or inviscid ones. However, based on the degree of complexity of the flow under investigation, a computational simulation may take up to several days, weeks, and even months for direct Navier- Stokes simulations (DNS). The difficulties associated with solving the Navier-Stokes equations are caused by the existence of the viscosity terms in the Navier-Stokes equations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Prandtl, L.: Über Flüssigkeitsbewegung bei sehr kleiner Reibung. In: 3. Internat. Math. Kongr. Heidelberg, 104 (1904), also in Prandtl, Gesammelte Abhandlungen, Springer, Heidelberg (1961)

    Google Scholar 

  2. Prandtl, L.: Über den Reibungswiderstand strömender Luft. Ergebnisse der Aerodynamischen Versuchsanstalt Göttingen. Gesammelte Abhandlung. Springer, Heidelberg (1961)

    Google Scholar 

  3. Prandtl, L.: Über die Entstehung von Wirbeln in idealen Flüssigkeiten, mit Anwendung auf die Tragflügeltheorie und andere Aufgaben. Vortr. Geb. Hydro- u. Aerodyn., Innsbruck, pp. 18–33 (1922), Nachdruck: Ges. Abhandlungen, pp. 696–713, Springer, Heidelberg (1961)

    Google Scholar 

  4. Betz, A.: Konforme Abbildung, 2nd edn. Springer, Heidelberg (1961)

    Google Scholar 

  5. Spurk, J.H.: Fluid Mechanics. Springer, Heidelberg (1997)

    MATH  Google Scholar 

  6. Prandtl, L., Tietjens, O.G.: Applied Hydro- and Aeromechanics. Dover Publications, Inc., New York (1934)

    Google Scholar 

  7. Wylie, R.: Advanced Engineering Mathemaitcs, 4th edn. McGraw-Hill, New York (1975)

    Google Scholar 

  8. Koppenfels, W., Stallmann, F.: Praxis der konformen Abbildung. Springer, Heidelberg (1959)

    MATH  Google Scholar 

  9. Vavra, M.H.: Aero-Thermodynamics and Flow in Turbomachines. John Wiley & Sons, New York (1960)

    Google Scholar 

  10. Thompson, W. (Lord Kelvin): Vortex Motion. Trans. Roy. Soc. Edinbg 25, 217–260 (1868)

    Google Scholar 

  11. Helmholtz, H.: Über die Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen. Zeitschrift der reinen und der angewandten Mathematik 55, 25–55 (1858)

    Article  MATH  Google Scholar 

  12. Kotschin, N.J., Kiebel, L.A., Rose, N.W.: Theoretische Hydrodynamik, vol. I. Akademie-Verlag, Berlin (1954)

    Google Scholar 

  13. Schlichting, H., Trockenbrodt, E.: Aerodynamik des Flugzeuges, 2 volumes, 2nd edn. Springer, Heidelberg (1969)

    MATH  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schobeiri, M.T. (2010). Inviscid Potential Flows. In: Fluid Mechanics for Engineers. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11594-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11594-3_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11593-6

  • Online ISBN: 978-3-642-11594-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics