Skip to main content

Nucleic Acids

  • Reference work entry
Encyclopedia of Astrobiology

Synonyms

DNA; Polydeoxyribonucleotide; Polyribonucleotide; RNA

Keywords

Adenine, adenosine, cytidine, cytosine, deoxyribose, DNA, guanine, guanosine, phosphate, purine, pyrimidine, ribose, RNA, thymidine, thymine, uracil, uridine

Definition

Nucleic acids are long, unbranched polymers of nucleotides. Each nucleotide monomer consists of a nitrogenous base, a pentose sugar, plus a phosphate group. Nucleotides polymerize by chemically linking a phosphate group at the 5′ position of one nucleotide to the hydroxyl group at the 3′ position of the next nucleotide. The linkage creates a phosphodiester bond, releasing a water molecule. In its two principle forms, ribonucleic acid (RNA) and deoxyribonucleic acid (DNA), nucleic acids store, transcribe, and translate genetic information into the diverse array of proteins needed for execution of almost every cellular process.

Overview

The large, complex molecules of life are carbon-based, and fall into four broad categories: carbohydrates, lipids,...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 749.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References and Further Reading

  • Crick F (1970) Central dogma of molecular biology. Nature 226:561–563

    Article  ADS  Google Scholar 

  • Devoe H, Tinoco I Jr (1962) The stability of helical polynucleotides: base contributions. J Mol Biol 4:500–517

    Article  Google Scholar 

  • Franklin RE, Gosling RG (1953) The structure of sodium thymonucleate fibres. I. The influence of water content. Acta Crystallogr 6(8–9):673–677

    Article  Google Scholar 

  • Gilbert W (1986) Origin of life: the RNA world. Nature 319(6055):618–618

    Article  ADS  Google Scholar 

  • Guerrier-Takada C, Gardiner K, Marsh T, Pace N, Altman S (1983) The RNA moiety of ribonuclease P Is the catalytic subunit of the enzyme. Cell 35(3 Pt 2):849–857

    Article  Google Scholar 

  • Hsiao C, Mohan S, Kalahar BK, Williams LD (2009) Peeling the onion: ribosomes are ancient molecular fossils. Mol Biol Evol 26(11):2415–2425

    Article  Google Scholar 

  • Kim SH, Sussman JL, Suddath FL, Quigley GJ, McPherson A, Wang AH, Seeman NC, Rich A (1974) The general structure of transfer RNA molecules. Proc Natl Acad Sci U S A 71(12):4970–4974

    Article  ADS  Google Scholar 

  • Kornberg RD (2007) The molecular basis of eukaryotic transcription. Proc Natl Acad Sci U S A 104(32):12955–12961

    Article  ADS  Google Scholar 

  • Kruger K, Grabowski PJ, Zaug AJ, Sands J, Gottschling DE, Cech TR (1982) Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of tetrahymena. Cell 31(1):147–157

    Article  Google Scholar 

  • Lescoute A, Leontis NB, Massire C, Westhof E (2005) Recurrent structural RNA motifs, Isostericity matrices and sequence alignments. Nucleic Acids Res 33(8):2395–2409

    Article  Google Scholar 

  • Mullis KB, Faloona FA (1987) Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Meth Enzymol 155:335–350

    Article  Google Scholar 

  • Oro J, Kimball AP (1962) Synthesis of purines under possible primitive earth conditions. II. Purine intermediates from hydrogen cyanide. Arch Biochem Biophys 96:293–313

    Article  Google Scholar 

  • Poole AM, Jeffares DC, Penny D (1998) The path from the RNA world. J Mol Evol 46(1):1–17

    Article  Google Scholar 

  • Rich A (1962) In: Kasha M, Pullman B (eds) Horizons in biochemistry. Academic, New York, pp 103–126

    Google Scholar 

  • Roberts RJ (1976) Restriction endonucleases. CRC Crit Rev Biochem 4(2):123–164

    Article  Google Scholar 

  • Saenger W (1984) Principles of nucleic acid structure. Springer, New York, p 556

    Book  Google Scholar 

  • Schmitt-Kopplin P, Gabelica Z, Gougeon RD, Fekete A, Kanawati B, Harir M, Gebefuegi I, Eckel G, Hertkorn N (2010) High molecular diversity of extraterrestrial organic matter in murchison meteorite revealed 40 years after its fall. Proc Natl Acad Sci U S A 107(7):2763–2768

    Article  ADS  Google Scholar 

  • Voet JG, Voet D (2003) Biochemistry. Wiley, New York

    Google Scholar 

  • Watson JD, Crick FH (1953) Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature 171(5451):737–738

    Article  ADS  Google Scholar 

  • Woese CR, Fox GE (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci U S A 74(11):5088–5090

    Article  ADS  Google Scholar 

  • Zamenhof S, Brawerman G, Chargaff E (1952) On the desoxypentose nucleic acids from several microorganisms. Biochim Biophys Acta 9(4):402–405

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loren Dean Williams .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Bowman, J.C., Williams, L.D. (2011). Nucleic Acids. In: Gargaud, M., et al. Encyclopedia of Astrobiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11274-4_1079

Download citation

Publish with us

Policies and ethics