Skip to main content

On A Notion of Rank for Unitary Representations of the Classical Groups

  • Chapter
Harmonic Analysis and Group Representation

Part of the book series: C.I.M.E. Summer Schools ((CIME,volume 82))

Abstract

1. Review of the Heisenberg group and the oscillator representation.

The goal of these lectures is to introduce some general concepts concerning unitary representations of locally compact groups, and to apply these concepts to the study of representations of semisimple Lie groups, especially the symplectic group. Historically, what we may call “general representation theory”, on one hand, and the representation theory of semisimple Lie groups on the other, have, with some notable exceptions, tended to go their separate ways; general concepts have not proven very powerful in semisimple harmonic analysis, which has needed its own special methods. The key phenomenon permitting at least a partial merger here is the oscillator representation of the symplectic group. Although this representation has received increasing attention in recent years, it may be still unfamiliar to some. Because of that, and because it will play such a pervasive role in the present study, I will begin by reviewing the basic definitions and salient properties of the oscillator representation. General references for the following material are [Cr], [H1], [Wil].

Let F be a local field - ℝ, ℂ, or non-Archimedean. We will assume F is not of characteristic 2. We let W be a vector space of dimension 2m over F, on which is defined a symplectic form < , >. We may choose a basis \( \left\{ {{\text{e}}_{\text{i}} ,\,{\text{f}}_{\text{i}} } \right\}_{{\text{i = 1}}}^{\text{m}} \) for W, such that

$$ \left\langle {{\text{e}}_{\text{i}} ,{\text{e}}_{\text{j}} } \right\rangle = 0 = \left\langle {{\text{f}}_{\text{i}} ,{\text{f}}_{\text{j}} } \right\rangle \,\,\,\,\,\,\,\,\,\,\,\left\langle {{\text{e}}_{\text{i}} ,{\text{f}}_{\text{j}} } \right\rangle = {{\delta }}_{{\text{ij}}} $$
(1.1)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Arthur, Harmonic analysis of the Schwartz space on a reductive Lie group, I and II, mimeographed notes.

    Google Scholar 

  2. C. Asmuth, Weil Representations of Symplectic p-adic groups, Am. J. Math., 101(1979), 885–908.

    Article  MathSciNet  MATH  Google Scholar 

  3. I. N. Bernstein, All reductive p-adic groups are tame, Fun. Anal. and App. 8 (1974), 91–93.

    Article  Google Scholar 

  4. A. Borel and N. Wallach, Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups, Annals of Math. Studies 94, Princeton University Press, 1980, Princeton, New Jersey.

    MATH  Google Scholar 

  5. P. Cartier, Quantum mechanical commutation relations and theta functions, Proc. Sym. Pure Math. IX, A.M.S., 1966, Providence, R.I.

    Google Scholar 

  6. M. Cowling, Sur l'algèbre de Fourier-Stieltjes d'un group semisimple, to appear.

    Google Scholar 

  7. J. Dixmier, Les C* -algebres et leurs representations, Gauthier-Villars, 1964, Paris.

    Google Scholar 

  8. M. Duflo, Représentations unitaires irréductibles des groupes simples complexes de rang deux, preprint.

    Google Scholar 

  9. N. Dunford and J. Schwartz, Linear operators, Interscience 1958–1971, New York.

    Google Scholar 

  10. T. Farmer, On the reduction of certain degenerate principal series representations of Sp(n,ℂ), Pac. J. Math. 84, No.2(1979), 291–303.

    MathSciNet  MATH  Google Scholar 

  11. J. Fell, The dual spaces of C* -algebras. T.A.M.S., v.94(1960), 364–403.

    MathSciNet  Google Scholar 

  12. J. Fell, Weak containment and induced representations of groups, Can. J. Math., v. 14(1962), 237–268.

    Article  MathSciNet  Google Scholar 

  13. J. Fell, Non-unitary dual spaces of groups, Acta Math., v. 114 (1965), 267–310.

    Article  MathSciNet  Google Scholar 

  14. K. Gross, The dual of a parabolic subgroup and a degenerate principal series of Sp(n,C), Am. J. Math. 93 (1971), 398–428.

    Article  MATH  Google Scholar 

  15. HCl Harish-Chandra, Discrete series for semisimple Lie groups II, Acta Math., v. 116 (1966), 1–111.

    Article  Google Scholar 

  16. Harish-Chandra, Harmonic analysis on semisimple Lie groups, B.A.M.S., v. 76 (1970), 529–551.

    Article  Google Scholar 

  17. Harish-Chandra, Harmonic analysis on reductive p-adic groups, Proc. Symp. Pure Math. XXVI, A.M.S. 1973, Providence, R.I.

    Google Scholar 

  18. S. Helgason, Differential Geometry and Symmetric Spaces, Academic Press, 1962, New York.

    MATH  Google Scholar 

  19. R. Howe, Reductive dual pairs and the oscillator representation, in preparation.

    Google Scholar 

  20. R. Howe, L2 duality for stable reductive dual pairs, preprint.

    Google Scholar 

  21. R. Howe, θ-series and invariant theory, Proc. Symp. Pure Math. XXXIII, Part I, 275–286.

    Google Scholar 

  22. R. Howe and C. Moore, Asymptotic properties of unitary representations, J. Fun. Anal. 32 (1979), 72–96.

    Article  MathSciNet  MATH  Google Scholar 

  23. D. Kazhdan, Connection of the dual space of a group with the structure of its closed subgroups, Fun. Anal. and App., v. 1 (1967) 63–65.

    Article  Google Scholar 

  24. J. Lepowsky, Algebraic results on representations of semisimple Lie groups, T.A.M.S. 176 (1973), 1–44.

    Article  MathSciNet  MATH  Google Scholar 

  25. G. Mackey, Unitary of group extensions, Acta Math., v. 99 (1958), 265–301.

    Article  MathSciNet  Google Scholar 

  26. I. MacDonald, Spherical functions on groups of p-adic types, Publ. Ramanujan Inst. 2, Univ. Madras, 1971, Madras, India

    Google Scholar 

  27. C. Moore and J. Wolf, Square integrable representations of nilpotent groups, T.A.M.S. 185 (1973).

    Google Scholar 

  28. M. Naimark, Normed Rings, P. Noordhoff 1964, Groningen, Netherlands.

    Google Scholar 

  29. E. Onofri, Dynamical quantization of the Kepler manifold, J. Math. Phys. 17 (1976), 401–408.

    Article  MathSciNet  Google Scholar 

  30. J. Repka, Tensor products of unitary representations of SL2(R), Am. J. Math. 100 (1978), 747–774.

    Article  MathSciNet  MATH  Google Scholar 

  31. J. Rosenberg, A quick proof of Harish-Chandra's Plancherel Theorem for spherical functions on a semisimple Lie groups, P.A.M.S. 63 (1971), 143–149.

    Google Scholar 

  32. D. Shale, Linear symmetries of free boson fields, T.A.M.S. 103 (1962), 149–167.

    Article  MathSciNet  MATH  Google Scholar 

  33. A. Silberger, Introduction to Harmonic Analysis on Reductive p-adic Groups, Princeton University Press, 1979, Princeton, New Jersey.

    MATH  Google Scholar 

  34. B. Srinivasan, The characters of the finite symplectic group Sp(4,q) T.A.M.S. 131 (1968), 488–525.

    MATH  Google Scholar 

  35. P. Trombi and V. Varadarajan, Asymptotic behavior of eigenfunctions on a semisimple Lie group, the discrete spectrum, Acta Math. 129(1972), 237–280.

    Article  MathSciNet  MATH  Google Scholar 

  36. V. Varadarajan, Characters and discrete series for Lie groups, Proc. Symp. Pure Math. XXVI, A.M.S. 1973, Providence, R.I.

    Google Scholar 

  37. G. Warner, Harmonic Analysis on Semi-Simple Lie Groups I, II. Grundlehren der Math. Wiss. 188, 189, Springer-Verlag, 1972, Heidelberg, New York.

    Google Scholar 

  38. A. Weil, Sur certains groupes d'opérateurs unitaires, Acta Math. 111, (1964), 143–211.

    Article  MathSciNet  MATH  Google Scholar 

  39. A. Weil, Basic Number Theory, Grund. der Math. Wiss. 144, Second Edition, Springer-Verlag 1973, Heidelberg, New York.

    Google Scholar 

  40. G. Zuckerman - oral communication.

    Google Scholar 

  41. G. Zuckerman, Continuous cohomology and unitary representations of real reductive groups, Ann. Math. 107 (1978), 495–516.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

A. Figà Talamanca

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Howe, R. (2010). On A Notion of Rank for Unitary Representations of the Classical Groups. In: Talamanca, A.F. (eds) Harmonic Analysis and Group Representation. C.I.M.E. Summer Schools, vol 82. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11117-4_4

Download citation

Publish with us

Policies and ethics