Skip to main content

Variational Methods for Nonlinear Eigenvalue Problems

  • Chapter
Eigenvalues of Non-Linear Problems

Part of the book series: C.I.M.E. Summer Schools ((CIME,volume 67))

Abstract

The goal of these lectures is to present an introduction to variational methods for nonlinear eigenvalue problems both in an abstract setting and as applied to nonlinear partial differential equations. Several different situations will be treated. Our study begins with “Theorems on Ljustemik-Schnirelmann type”. The simplest such result, which is due to Ljusternik [1] states: If f is an even continuously differentiable real valued function on ℝn, then \({\rm{f}}|_{_{{\rm{S}}^{{\rm{n - 1}}}}}\) possesses at least n distinct pairs of critical points (i.e. points at which f′(x) = λx, λ = (f′(x),x)). This theorem serves as a prototype for more general situations where one has a real valued function (usually even) on a manifold (usually “spherelike”) and uses topological invariants associated with the manifold to obtain lower bounds for the number of critical points the functional possesses. Morse theory treats similar questions and indeed there are many ideás in common. However smoothness requirements for theorems of Ljusternik-Schnirelmann type are less stringent (C1 rather than C2) than in Morse theory and critical points need not be nondegenerate. These facts combine to make the Ljusternik-Schnirelmann theory more applicable to nonlinear partial differential equations. On the other hand when it can be used, Morse theory gives more detailed information on critical points and their types (see e.g. [2]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ljusternik, L. A., Topologische Grundlagen der allgemeinen Eigenwerttheorie, Monatsch. Math. Phys. 37, (1930), 125–130.

    Article  Google Scholar 

  2. Palais, R. S., Critical point theory and the minimax principle, Proc. Sym. Pure Math., 15, A.M. S., Providence, R.I. (1970), 185–212.

    MathSciNet  Google Scholar 

  3. Karasnoselski, M. A., Topological Methods in the Theory of Nonlinear Integral Equations, Macmillan, New York, 1964.

    Google Scholar 

  4. Marino, A. and G. Prodi, La teoria di Morse per gli spazi di Hilbert, Rend. Sem. Mat. Univ. Padova, 41, (1968), 43–68.

    MathSciNet  MATH  Google Scholar 

  5. Naumann, J., Variationsmethoden für Existenz und Bifurkation von Lösungen nichtlinearer Eigenwertprobleme I & II, Math. Nacht. 54, (1972), 285–296, 55 (1973), 325–344.

    Article  MathSciNet  MATH  Google Scholar 

  6. Böhme, R., Die Lösung der Verzweigungsgleichungen für nichtlineare Eigenwertprobleme,Math. Z., 127, (1972), 105–126.

    Article  MathSciNet  MATH  Google Scholar 

  7. Marino, A., La biforcazione nel caso variazionalle, Proc. Conference del semanario di Mathematica dell' Universetà di Bari, Nov. 1972, to appear.

    Google Scholar 

  8. Ljusternik, L. A. and L. G. Schnirelmann, Topological Methods in the Calculus of Variations, Hermann, Paris, 1934.

    Google Scholar 

  9. Vainberg, M. M., Variational Methods for the Study of Nonlinear Operators, Holden-Day, San Francisco, 1964.

    MATH  Google Scholar 

  10. Schwartz, J. T., Nonlinear Functional Analysis, lecture notes, Courant Inst. of Math. Sc., New York, Univ. 1965.

    Google Scholar 

  11. Fučik, S., J. Nečas, J. Souček, and V. Souček, Spectral Analysis of Nonlinear Operators, Lecture Notes in Mathematics #343, Springer Verlag, 1973.

    MATH  Google Scholar 

  12. Palais, R., Ljusternik-Schnirelman theory on Banach manifolds, Topology 5, (1966), 115–132.

    Article  MathSciNet  MATH  Google Scholar 

  13. Browder, F. E., Existence theorems for nonlinear partial differential equations, Proc. Sym. Pure Math. 16, A.M.S. Providence, (1970), 1–60.

    Google Scholar 

  14. Browder, F. E., Nonlinear eigenvalue problems and group invariance, appearing in Functional Analysis and Related Fields, F. E. Browder, editor, Springer (1970), 1–58.

    Google Scholar 

  15. Ambrosetti, A. and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14, (1973), 349–381.

    Article  MathSciNet  MATH  Google Scholar 

  16. Berger, M,, Applications of global analysis to specific nonlinear eigenvalue problems. Rocky Mtn. Math. J. 3 (1973), 319–354.

    Article  MATH  Google Scholar 

  17. Coffman, C. V., A minimum-minimax principle for a class of nonlinear integral equations, J. Analyse Math. 22 (1969), 391–419.

    Article  MathSciNet  MATH  Google Scholar 

  18. Connor, E. and E. E. Floyd, Fixed point free involutions and equivariant maps, Bul. A.M.S., 66 (1960), 416–441.

    Article  Google Scholar 

  19. Rabinowitz, P. H., Some aspects of nonlinear eigenvalue problems, Rocky Mtn. J. of Math., 3 (1973), 161–202.

    Article  MathSciNet  MATH  Google Scholar 

  20. Clark, D. C., A variant of the :Ljustemik-Schnirelman Theory, Ind. Univ. Math., J., 22 (1972), 65–74.

    Article  MATH  Google Scholar 

  21. Amann, H., Ljusternik-Schnirelman Theory and nonlinear eigenvalue problems, Math. Ann., 199 (1972), 55–72.

    Article  MathSciNet  MATH  Google Scholar 

  22. Fučik, S., J. Nečas, J. Souček, and V. Souček, Upper bounds for the number of critical levels for nonlinear operators in Banach spaces of the type of second order nonlinear partial differential equations, J. Func. Anal., 11 (1972), 314–344.

    Article  MATH  Google Scholar 

  23. Schwartz, J. T., Generalizing the Ljusternik-Schnirelman theory of critical points, Comm. Pure Appl. Math., 17 (1964), 307–315.

    Article  MathSciNet  MATH  Google Scholar 

  24. Freedman, A., Partial Differential Equations, Holt, Rinehart, and Winston Inc., New York, 1969.

    Google Scholar 

  25. Hempel, J. A., Multiple solutions for a class of nonlinear elliptic boundary value problems, Indiana Univ. Math. J., 20 (1971), 983–996.

    Article  MathSciNet  MATH  Google Scholar 

  26. Ambrosetti, A., On the existence of multiple solutions for a class of nonlinear boundary value problems, Rend. Sem. Mat. Univ. Padova, 49 (1973), 195–204.

    MathSciNet  MATH  Google Scholar 

  27. Pohozaev, S. I., Eigenfunctions of the equation Δu + λf(u) = 0, Sov. Math., 5 (1965), 1408–1411.

    Google Scholar 

  28. Rabinowitz, P. H., Variational methods for nonlinear elliptic eigenvalue problems, Indiana Univ.; Math. J., 23 (1974), 729–754.

    Article  MathSciNet  MATH  Google Scholar 

  29. Hempel, J., Superlinear variational boundary value problems and nonuniqueness, thesis, Univ. of New England, Australia, 1970.

    Google Scholar 

  30. Reeken, M., Stability of critical points under small perturbations, Part II: Analytic theory, Manus. Math., 8 (1973), 69–92.

    MathSciNet  MATH  Google Scholar 

  31. Reeken, M., Stability of critical values and isolated critical continua, Math. Report #79, Battelle Advanced Studies Center, Geneva, Switzerland, Nov. 1973.

    Google Scholar 

  32. McLeod, B. and R. E. L. Turner, Bifurcation for nondifferentiable operators, to appear.

    Google Scholar 

  33. Berger, M. S., Bifurcation theory and the type numbers of Marston Morse, Proc. Nat. Acad. Sc., 69 (1972), 1737–1738.

    Article  MATH  Google Scholar 

  34. Rabinowitz, P. H., A bifurcation theorem for potential operators, to appear.

    Google Scholar 

  35. Clark, D. C., Eigenvalue bifurcation for odd gradient operators, to appear.

    Google Scholar 

  36. Crandall, M. G. and P. H. Rabinowitz, Some continuation and variational methods for positive solutions of nonlinear elliptic eigenvalue problems, to appear Arch. Rat. Mech. Anal.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

G. Prodi

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rabinowitz, P. (2009). Variational Methods for Nonlinear Eigenvalue Problems. In: Prodi, G. (eds) Eigenvalues of Non-Linear Problems. C.I.M.E. Summer Schools, vol 67. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10940-9_4

Download citation

Publish with us

Policies and ethics