Abstract
Artificial genetic codes, neural networks and neural codes are presented as theoretical frames for evolutionary computation and biomimetic devices.
Models for genetic code evolution offer suggestions for chemical and biochemical inspired computations as for instance artificial chemistry or chemical programming.
Neural networks architecture issues require evolvability as outlined by growing neural nets or by protein based neural networks.
The significance of neural coding, symbolic connectionist hybrids, neural binding, temporal synchrony studies for unconventional computing and neurocognitive devices is highlighted.
Evolutionary circuits based on electrochemical filaments are proposed. The perspectives of evolvable circuits based on bio-molecules properties, are evaluated.
Case studies show how technological innovation should find the right moment to free the artificial system designer from the detailed experimental data of real systems.
Preview
Unable to display preview. Download preview PDF.
References
Adamatzky, A., Costello, B.D.L.: Experimental logical gates in a reaction-diffusion medium: The XOR gate and beyond. Phys. Rev. E 197(22), 344–352 (2002)
Adleman, L.M.: Molecular computation of solutions to combinatorial problems. Science 266(5187), 1021–1024 (1994)
Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., Watson, J.D.: Molecular Biology of the Cell. Garland Publishing, NY (1994)
Ardell, D.H., Sella, G.: No accident: genetic codes freeze in error-correcting patterns of the standard genetic code. Philos. Trans. R Soc. London B Biol. Sci. 357(1427), 1625–1642 (2002)
Austin, J.: Distributed associative memories for high speed symbolic reasoning. International Journal on Fuzzy Sets and System 82(2), 223–233 (1996)
Baeck, T., Hammel, U., Schwefel, H.P.: Evolutionary computation: Comments of the history and current state. IEEE Trans. Evolutionary Computation 1, 3–17 (1997)
Balakrishnan, K., Honavar, V.: Evolutionary design of neural architectures-A preliminary taxonomy and guide to literature. Department of Computer Science Technical Report 95-01 (1995)
Banzhaf, W.: Self-replicating sequences of binary numbers, foundations I. General, Biological Cybernetics 69, 269–274 (1993)
Barnsley, M.F.: Fractals Everywhere. Academic Press, New York (1993)
Bedau, M., McCaskill, J.S., Packard, N.H., Rasmussen, S., Adami, C., Green, D.G., Ikegami, T., Kaneko, K., Ray, T.S.: Open problems in artificial life. Artificial Life 6, 363–376 (2000)
Benyo, B., Biro, J.C., Benyo, Z.: Codes in the codons: Construction of a codon/amino acid periodic Table and a study of the Nature of specific nucleic acid-protein interactions. In: Proceedings of the 26th Annual International Conference of the IEEE EMBS, San Francisco, pp. 2860–2863 (2004)
Bird, J., Layzell, P.: The Evolved Radio and its Implications for Modeling the Evolution of Novel Sensors. In: Proceedings of the Congress on Evolutionary Computation, CEC 2002, pp. 1836–1841 (2002)
Birge, R.: Protein-based computers. Sci. Am. 272, 90–95 (1995)
Bradley, D.W., Ortega-Sanchez, C., Tyrrel, A.M.: Embryonics+Immunotronics: A bioinspired approach to fault tolerances. In: Proceedings of the 2nd NASA/DoD Workshop on Evolvable Hardware (2000)
Bray, D.: Protein molecules as computational elements in living cells. Nature 376, 307–312 (1995)
Burgess, N., Recce, M., O’Keefe, J.: A model of hippocampal function. Neural Networks 7, 1065–1081 (1994)
Caporale, L.H.: Is there a higher level genetic code that directs evolution? Molecular and Cellular Biochemistry 64, 5–13 (1984)
Carbone, A., Seeman, N.C.: Circuits and programmable self-assembling DNA structures. PNAS 99, 12577–12582 (2002a)
Carbone, A., Seeman, N.C.: A route to fractal DNA assembly. Natural Computing 1, 469–480 (2002b)
Cariani, P.: On the Design of Devices with Emergent Semantic Functions. Ph D Dissertation, Binghamton University (1989)
Cariani, P.: To evolve an ear: epistemological implications of Gordon Pask’s electrochemical devices. Systems Research 10, 19–33 (1993)
Cariani, P.: Towards an evolutionary semiotics: the emergence of new sign functions in organisms and devices. In: Van de Vijver, G., Salthe, S., Delpos, M. (eds.) Evolutionary Systems, pp. 359–377. Kluwer, Dordrecht (1998)
Cariani, P.: Symbols and dynamics in the brain. Biosystems 60, 59–83 (2001)
Carpenter, G., Grossberg, S.: ART2: Selforganization of stable category recognition codes for analog input patterns. Applied Optics 26, 4919–4930 (1987)
Cheung, P., Berlin, A., Biegelsen, D., Jackson, W.: Batch fabrication of pneumatic valve arrays by combining MEMS with PCB technology. In: Symposium on Micro-Mechanical Systems, ASME, Dallas, TX, 62, pp. 39–46 (1997)
Chomsky, N.: Cartesian Linguistics. Harper & Row, New York (1966)
Cook, M., Rothemund, P.W.K., Winfree, E.: Self-assembled circuit patterns. In: Chen, J., Reif, J.H. (eds.) DNA 2003. LNCS, vol. 2943, pp. 91–107. Springer, Heidelberg (2004)
Damasio, A.R.: The brain binds entities and events by multiregional activation from convergence zones. Neural Comput. 1, 123–132 (1989)
Danckwerts, H.J., Neubert, D.: Symmetries of genetic code-doublets. J. Mol. Evol. 5, 327–332 (1975)
Dasgupta, D., McGregor, D.R.: Designing Neural Networks using the Structured Genetic Algorithm. In: Proceedings of the International Conference on Artificial Neural Networks (ICANN), Brighton, UK (1992)
Dewar, R.C.: Informational theory explanation of the fluctuation theorem, maximum entropy production, and self-organized criticality in non-equilibrium stationary states. J. Phys. A 36, 631–641 (2003)
Di Marzo Serugendo, G., Fitzgerald, J., Romanovsky, A., Guelfi, N.: A Generic Framework for the Engineering of Self-Adaptive and Self-Organising Systems. Technical Report CS-TR-1018, School of Computing Science, University of Newcastle (2007)
Dittrich, P.: The Bio-Chemical Information Processing Metaphor as a Programming Paradigm for Organic Computing. In: ARCS Workshops, pp. 95–99 (2005)
Dittrich, P., Ziegler, J., Banzhaf, W.: Artificial chemistries-a review. Artificial Life 7(3), 225–275 (2001)
Doursat, R.: A Contribution to the Study of Representations in the Nervous System and in Artificial Neural Networks. Ph D Thesis, University Paris (1991)
Doursat, R.: Of tapestries, ponds and RAIN. Toward fine-grain mesoscopic neurodynamics in excitable media. In: International Workshop on nonlinear brain dynamics for computational intelligence. Salt Lake City, USA (2007)
Doursat, R., Bienenstock, E.: Neocortical self-structuration as a basis for learning. In: 5th International Conference on Development and Learning, ICDL 2006, Indiana University, Bloomington, IN (2006)
Eigen, M., Schuster, P.: The hypercycle a principle of natural self-organization. Springer, Berlin (1979)
Eigen, M., Winkler-Oswatitsch, R.: Transfer-RNA: The early adaptor. Naturwiss 68, 217–228 (1981)
Elman, J.L.: Finding structure in time. Cognitive Science 14, 179–211 (1990)
Elman, J.L.: Learning and development in neural networks:The importance of starting small. Cognition 48, 71–99 (1993)
Erickson, D., Li, D.: Integrated microfluidic devices. Analytica Chimica Aca. 507, 11–26 (2004)
Findley, G.L., Findley, A.M., McGlynn, S.P.: Symmetry characteristics of the genetic code. Proc. Natl. Acad. Sci. USA 79, 7061–7065 (1982)
Fodor, J.A., Pylyshyn, Z.: Connectionism and cognitive architecture: a critical analysis. Cognition 28(1/2), 3–71 (1988)
von Foerster, H.: What is memory that it may have hindsight and foresight as well? In: Bogoch, S. (ed.) The Future of the Brain Sciences, pp. 19–65, 89–95. Plenum Press, New York (1969)
Forcey, S.: 2-fold operads Young diagrams and dendritic growth, University Research Symposium, Tennessee State University (2008)
Freeman, W.J.: Neurodynamics. An exploration of mesoscopic brain dynamics. Springer, London (2000)
Fritzke, B.: Growing cell structure-a self organizing network for unsupervised and supervised learning. Neural Networks 7(9), 1441–1460 (1994)
Geard, N., Wiles, J.: Structure and dynamics of a gene network model incorporating small RNAs. In: IEEE Congress on Evolutionary Computation, pp. 199–206 (2003)
Goranovic, G., Rasmussen, S., Nielsen, P.E.: Artificial life forms in microfluidic systems. In: Proceedings microTAS 2006, Tokyo, Japan, vol. 2, p. 1408 (2006)
Gould, S.J.: The paradox of the first tier: an agenda for paleobiology. Paleobiology 11, 2–12 (1985)
Halford, G.S., Wilson, W.H., Phillips, S.: Processing capacity defined by relational complexity. Implications for comparative, developmental and cognitive psychology. Behavioural and Brain Sciences 21(6), 803–831 (1998)
Harding, S.: Evolution in Materio. Ph D Thesis University of York (2005)
Haronian, D., Lewis, A.: Elements of a unique bacteriorodopsib neural network architecture. Applied Optics 30, 597–608 (1991)
Hartman, H.: Speculations on the evolution of the genetic code. Origins of Life 6, 423–427 (1975)
Healy, M.J., Caudell, T.P.: Ontologies and worlds in category theory: Implications for neural systems. Axiomathes 16(1), 165–214 (2006)
Hjelmfelt, A., Weinberger, E.D., Ross, J.: Chemical implementation of finite-state machines. PNAS USA 89, 383–387 (1992)
Hummel, J.E., Biederman, I.: Dynamic binding in a neural network for shape recognition. Psychological Review 99, 480–517 (1992)
Hummel, J.E., Choplin, J.M.: Toward an integrated account of reflexive and reflective reasoning. In: Gleitman, L., Joshi, A.K. (eds.) Proceedings of the Twenty Second Annual Conference of the Cognitive Science Society, pp. 232–237. LEA, Mahwah (2000)
Hummel, J.E., Holyoak, K.J.: Distributed representation of structure. A theory of analogical access and mapping. Psychological Review 104, 427–466 (1997)
Inhelder, B., Piaget, J.: The Growth of Logical Thinking from Childhood to Adolescence. Basic Books, New York (1958)
Iordache, O.: Evolvable Designs of Experiments Applications for Circuits. J. Wiley VCH, Weinheim (2009)
Jacob, F., Monod, J.: On the regulation of gene activity. Cold Spring Harbor Symp. Quant. Biol. 26, 193–211 (1961)
Jimenez-Montano, M.A.: Protein evolution drives the evolution of the genetic code and vice versa. Biosystems 54, 47–64 (1999)
Jimenez-Montano, M.A., de la Mora-Basanez, R., Poschel, T.: Poschel T The hypercube structure of the genetic code explains conservative and non-conservative amino acid substitutions in vivo and in vitro. Biosystems 39, 117–125 (1996)
Kargupta, H.: A striking property of genetic-code like transformations. Complex Systems 13, 1–32 (2001)
Katis, P., Sabadini, N., Walters, R.F.C.: On the algebra of systems with feedback & boundary. Rendiconti del Circolo Matematico di Palermo Serie II, Suppl. 63, 123–156 (2000)
Keller, R., Banzhaf, W.: The evolution of genetic code in genetic programming. In: Proc. Genetic and Evolutionary Computation Conf., pp. 077–1082. Morgan Kaufmann Publishers, San Francisco (1999)
Kitano, H.: Designing neural network using genetic algorithm with graph generation system. Complex Systems 4, 461–476 (1990)
Koonin, E.V., Novozhilov, A.S.: Origin and evolution of the genetic code: The universal enigma. IUBMB Life 61(2), 99–111 (2009)
Koza, J.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)
Kuhn, H., Kuhn, C.: Diversified world: drive of life’s origin? Angew. Chem. International 42, 262–266 (2003)
Kuhn, H., Waser, J.: Molecular self-organization and the origin of life. Angew. Chem. Int. Ed. Engl. 20, 500–520 (1981)
Kuhn, H., Waser, J.: Hypothesis on the origin of genetic code. FEBS Letters 352, 259–264 (1994)
Kuhnert, L., Algadze, K.I., Krinsky, V.I.: Image processing using light-sensitive chemical waves. Nature 337, 244–247 (1989)
Lehn, J.M.: Supramolecular chemistry- from molecular information towards self-organization and complex matter. Reports on Progress in Physics 67, 249–265 (2004)
Lindenmayer, A.: Mathematical models for cellular interaction in development, I, II. J. Theor. Biol. 18, 280–315 (1968)
Lovell, C.J., Jones, G., Zauner, K.P.: Autonomous Experimentation: Coupling Machine Learning with Computer Controlled Microfluidics. In: ELRIG Drug Discovery, Liverpool, September 7-8 (2009)
Maass, W.: Liquid computing. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds.) CiE 2007. LNCS, vol. 4497, pp. 507–516. Springer, Heidelberg (2007)
Macias, N.J.: The PIG paradigm: The design and use of a massively parallel fine grained self-reconfigurable infinitely scalable architecture. In: Proceedings First NASA/DoD Workshop on Evolvable Hardware (1999)
Mahalik, N.P.: Micromanufacturing and Nanotechnology. Springer, New York (2005)
Mallot, H.A.: Spatial cognition: behavioral competences, neural mechanisms and evolutionary scaling. Kognitionwissenchaft 8, 40–48 (2006)
von der Malsburg, C.: Am I thinking assemblies? In: Palm, G., Aertsen, A. (eds.) Brain theory, pp. 161–176. Spinger, NY (1986)
von der Malsburg, C.: The correlation theory of brain function. In: Domany, E., van Hemmen, J.L., Schulten, K. (eds.) Models of Neural Networks II: Temporal Aspects of Coding and Information Processing in Biological Systems, pp. 95–119. Springer, New York (1994)
von der Malsurg, C.: Vision as an exercise in organic computing. GI Jahrestagung (2), 631–635 (2004)
Mange, D., Sanchez, E., Stauffer, A., Tempesti, G., Marchal, P., Piguet, C.: Embryonics: A new methodology for designing Field-Programmable Gate Arrays with Self-Repair and Self-Replicating Properties. IEEE Transactions on VLSI Systems 6(3), 387–399 (1998)
Mange, D., Stauffer, A., Petraglio, E., Tempesti, E.: Self-replicating loop with universal construction. Physica D 191, 178–192 (2004)
Mann, S. (ed.): Biomimetic Materials Chemistry. VCH, Weinheim (1996)
Matsumaru, N., Dittrich, P.: Organization-oriented chemical programming for the organic design of distributed computing systems. In: Proc. of BIONETICS 2006, Cavalese, December 11-13. IEEE, Los Alamitos (2006)
Miller, J.F.: Evolution in materio. In: International Conference on Evolvable Systems, Prague, Czech Republic (2008)
Miller, J.F., Downing, K.: Evolution in materio: Looking beyond the silicon box. In: Proceedings of the 2002 NASA/DoD Conference on Evolvable Hardware, pp. 167–176. IEEE Computer Society Press, Los Alamitos (2002)
Müller-Schloer, C., von der Malsburg, C., Wurtz, R.P.: Organic Computing. Informatik Spektrum (27), 332–336 (2004)
Nikolajewa, S., Friedel, M., Beyer, A., Wilhelm, T.: The new classification scheme of the genetic code, tRNA usage and early code evolution. J. Bioinf. Comput. Biol. 4, 609–620 (2006)
Nolfi, S., Parisi, D.: Genotypes for Neural Networks. In: Arbib, M.A. (ed.) The Handbook of Brain Theory and Neural Networks. MIT Press, Cambridge (1995a)
Nolfi, S., Parisi, D.: Evolving artificial neural networks that develop in time. In: Moran, F., Moreno, A., Merelo, J.J., Chacon, P. (eds.) Advance in Artificial Life, Proceeding of the third European Conference on Artificial Life. Springer, Heidelberg (1995b)
Nolfi, S., Parisi, D.: Neural networks in an artificial life perspective. In: Gerstner, W., Germond, A., Hasler, M., Nicoud, J.D. (eds.) Proceedings of the 7th International Conference on Artificial Neural Networks (ICANN 1997), pp. 733–738. Springer, Berlin (1997)
Nolfi, S., Tani, J.: Extracting regularities in space and time through a cascade of prediction networks: The case of a mobile robot navigating in a structured environment. Connection Science 2(11), 129–152 (1999)
van Noort, D., Wagler, P., McCaskill, J.S.: The role of microreactors in molecular computing. Smart Mater. Struct. 11, 756–760 (2002)
Patel, A.: The triple genetic code had a doublet predecessor. J.Theor. Biol. 233, 527–532 (2005)
Pato, R.C., Toh, C.-H.: Computational aspects of protein functionality. Comp. Funct. Genom. 5, 85–90 (2004)
Pattee, H.H.: Evolving self-reference: matter, symbols, and semantic closure. Communication and Cognition-Artificial Intelligence 12(1-2), 9–28 (1995)
Pattee, H.H.: Causation, control and the evolution of complexity. In: Anderson, P.B., et al. (eds.) Downward Causation, pp. 63–77. Aarhus University Press, Aarhus (2000)
Perlwitz, M.D., Burks, C., Waterman, M.S.: Pattern Analysis of the Genetic Code. Advances in Applied Mathematics 9, 7–21 (1988)
Pietzowski, A., Satzger, B., Trumler, W., Ungerer, T.: A bioinspired approach for self-protecting in organic middleware with artificial antibodies. In: de Meer, H., Sterbenz, J.P.G. (eds.) IWSOS 2006. LNCS, vol. 4124, pp. 202–215. Springer, Heidelberg (2006)
Plate, T.: Holographic Reduced Representations. IEEE Transactions of Neural Networks 6, 623–641 (1995)
Pollack, J.B.: Recursive Distributed Representations. Artificial Intelligence 46, 77–105 (1990)
Prigogine, I.: From Being into Becoming. W. H. Freeman, San Francisco (1980)
Quick, T., Dautenhahn, K., Nehaniv, C., Roberts, G.: The Essence of Embodiment: A Framework for Understanding and Exploiting Structural Coupling Between System and Environment. In: Proc. Third International Conference on Computing Anticipatory Systems, Liège, Belgium (CASYS 1999) (1999)
Rasmussen, S., Chen, L., Deamer, D., Krakauer, D.C., Packard, N.H., Stadler, P.F., Bedau, M.A.: Transition from nonliving to living matter. Science 303, 963–965 (2004)
Rocha, L.M.: Artificial semantically closed objects, Communication and Cognition. Artificial Intelligence 12(1-2), 63–90 (1995)
Rocha, L.M.: Evidence Sets and Contextual Genetic Algorithms: Exploring Uncertainty, Context and Embodiment in Cognitive and Biological Systems, Ph.D. Dissertation, Binghamton University (1997)
Ronneberg, T., Landweber, L.F., Freeland, S.J.: Testing a biosynthetic theory of the genetic code: fact or artifact? PNAS 97(25), 13690–13695 (2000)
Schmajuk, N.A., Thieme, A.D.: Purposive behavior and cognitive mapping: An adaptive neural network. Biological Cybernetics 67, 165–174 (1992)
Schrauwen, B., Verstraeten, D., van Campenhout, J.: An overview of reservoir computing theory, applications and implementations. In: Proceedings of the 15th European Symposium on Artificial Neural Networks, pp. 471–482 (2007)
Shastri, L., Ajjanagadde, V.: From simple associations to systematic reasoning: A connectionist encoding of rules, variables and dynamic bindings using temporal synchrony. Behavioral and Brain Sciences 16(3), 417–493 (1993)
Siegmund, E., Heine, B., Schulmeyer, P.: Molecular electronics: The first steps towards a new technology. Int. J. of Electronics 69, 145–152 (1990)
Spiro, P.A., Parkinson, J.S., Othmer, H.G.: A model of excitation and adaptation in bacterial chemotaxis. Proc. Natl. Acad. Sci. USA 94, 7263–7268 (1997)
Suzuki, H., Sawai, H.: Chemical genetic algorithms-Coevolution between codes and code translation. In: Artificial Life VIII, pp. 164–172. MIT Press, Cambridge (2002)
Tangen, U., Wagler, P.F., Chemnitz, S., Goranovic, G., Maeke, T., McCaskill, J.S.: An electronically controlled microfluidics approach towards artificial cells. Complexus 3, 48–57 (2006)
Taylor, E.G., Hummel, J.E.: Finding similarity in a model of relational reasoning. Cognitive Systems Research 10, 229–239 (2009)
Taylor, T.: Creativity in evolution: Individuals, Interactions and Environments. In: Bentley, P.J., Corne, D.W. (eds.) Creative Evolutionary Systems. Morgan Kaufmann, San Fransisco (2002)
Thompson, A.: Hardware Evolution: Automatic design of electronic circuits in reconfigurable hardware by artificial evolution. Springer, Heidelberg (1998)
Trifonov, E.N.: Elucidating sequence codes. Three codes for evolution. Annals of the NY. Acad. Sci. 870, 330–338 (1999)
Trifonov, E.N.: Consensus temporal order of amino acids and evolution of the triplet code. Gene 261, 139–151 (2000)
Trullier, O., Meyer, J.A.: Biomimetic Navigation Models and Strategies in Animats. AI Commun. 10(2), 79–92 (1997)
von Uexküll, J.: Theoretische Biologie. Frankfurt a. M.: Suhrkamp Taschenbuch Wissenschaft, xxiv+378 (1973)
Verpoorte, E., de Rooij, N.F.: Microfluidics meets MEMS. Proc. of the IEEE. 91, 930–953 (2003)
Virgo, N., Harvey, I.: Adaptive growth processes: a model inspired by Pask’s ear. In: Bullock, S., Noble, J., Watson, R.A., Bedau, M.A. (eds.) Proceedings of the Eleventh International Conference on Artificial Life, pp. 656–661. MIT Press, Cambridge (2008)
Vsevolodov, N.: Biomolecular Electronics, an Introduction via Photosensitive Proteins. Birkhaeuser, Boston (1998)
Zachary, W., Le Mentec, J.C.: Incorporating metacognitive capabilities in synthetic cognition. In: Proceedings of The Ninth Conference on Computer Generated Forces and Behavioral Representation, Orlando, FL, pp. 513–521 (2000)
Weberndorfer, G., Hofacker, I.L., Stadler, P.F.: On the evolution of primitive genetic codes. Orig. Life Evol. Biosph. 33(4-5), 491–514 (2003)
Wilhelm, T., Nikolajewa, S.L.: A new classification scheme of the genetic code. J. Mol. Evol. 59, 598–605 (2004)
Wilson, H.W., Halford, G.S.: Robustness of Tensor Product networks using distributed representations. In: Proceedings of the Fifth Australian Conference on Neural Networks (ACNN 1994), pp. 258–261 (1994)
Winfree, E.: Algorithmic self-assembly of DNA: Theoretical motivations and 2d assembly experiments. Journal of Biomolecular Structure & Dynamics 11, 263–270 (2000)
Wong, J.T.: A co-evolution theory of the genetic code. Proc. Natl. Acad. Sci. USA 72, 1909–1912 (1975)
Wu, H.L., Bagby, S., van der Elsen, J.M.: Evolution of the genetic triplet code via two types of doublet codons. J. Mol. Evol. 61, 54–64 (2005)
Yao, X.: Evolving Artificial Neural Networks. Proceeding of the IEEE 87(9), 1423–1447 (1999)
Zauner, K.P.: Molecular Information Technology. Critical Reviews in Solid State and Material Sciences 30(1), 33–69 (2005)
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Iordache, O. (2010). Biosystems and Bioinspired Systems. In: Polystochastic Models for Complexity. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10654-5_4
Download citation
DOI: https://doi.org/10.1007/978-3-642-10654-5_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-10653-8
Online ISBN: 978-3-642-10654-5
eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)