Skip to main content

Biosystems and Bioinspired Systems

  • Chapter
Polystochastic Models for Complexity

Part of the book series: Understanding Complex Systems ((UCS))

  • 691 Accesses

Abstract

Artificial genetic codes, neural networks and neural codes are presented as theoretical frames for evolutionary computation and biomimetic devices.

Models for genetic code evolution offer suggestions for chemical and biochemical inspired computations as for instance artificial chemistry or chemical programming.

Neural networks architecture issues require evolvability as outlined by growing neural nets or by protein based neural networks.

The significance of neural coding, symbolic connectionist hybrids, neural binding, temporal synchrony studies for unconventional computing and neurocognitive devices is highlighted.

Evolutionary circuits based on electrochemical filaments are proposed. The perspectives of evolvable circuits based on bio-molecules properties, are evaluated.

Case studies show how technological innovation should find the right moment to free the artificial system designer from the detailed experimental data of real systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adamatzky, A., Costello, B.D.L.: Experimental logical gates in a reaction-diffusion medium: The XOR gate and beyond. Phys. Rev. E 197(22), 344–352 (2002)

    Google Scholar 

  • Adleman, L.M.: Molecular computation of solutions to combinatorial problems. Science 266(5187), 1021–1024 (1994)

    Article  Google Scholar 

  • Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., Watson, J.D.: Molecular Biology of the Cell. Garland Publishing, NY (1994)

    Google Scholar 

  • Ardell, D.H., Sella, G.: No accident: genetic codes freeze in error-correcting patterns of the standard genetic code. Philos. Trans. R Soc. London B Biol. Sci. 357(1427), 1625–1642 (2002)

    Article  Google Scholar 

  • Austin, J.: Distributed associative memories for high speed symbolic reasoning. International Journal on Fuzzy Sets and System 82(2), 223–233 (1996)

    Article  Google Scholar 

  • Baeck, T., Hammel, U., Schwefel, H.P.: Evolutionary computation: Comments of the history and current state. IEEE Trans. Evolutionary Computation 1, 3–17 (1997)

    Article  Google Scholar 

  • Balakrishnan, K., Honavar, V.: Evolutionary design of neural architectures-A preliminary taxonomy and guide to literature. Department of Computer Science Technical Report 95-01 (1995)

    Google Scholar 

  • Banzhaf, W.: Self-replicating sequences of binary numbers, foundations I. General, Biological Cybernetics 69, 269–274 (1993)

    Article  MATH  Google Scholar 

  • Barnsley, M.F.: Fractals Everywhere. Academic Press, New York (1993)

    MATH  Google Scholar 

  • Bedau, M., McCaskill, J.S., Packard, N.H., Rasmussen, S., Adami, C., Green, D.G., Ikegami, T., Kaneko, K., Ray, T.S.: Open problems in artificial life. Artificial Life 6, 363–376 (2000)

    Article  Google Scholar 

  • Benyo, B., Biro, J.C., Benyo, Z.: Codes in the codons: Construction of a codon/amino acid periodic Table and a study of the Nature of specific nucleic acid-protein interactions. In: Proceedings of the 26th Annual International Conference of the IEEE EMBS, San Francisco, pp. 2860–2863 (2004)

    Google Scholar 

  • Bird, J., Layzell, P.: The Evolved Radio and its Implications for Modeling the Evolution of Novel Sensors. In: Proceedings of the Congress on Evolutionary Computation, CEC 2002, pp. 1836–1841 (2002)

    Google Scholar 

  • Birge, R.: Protein-based computers. Sci. Am. 272, 90–95 (1995)

    Article  Google Scholar 

  • Bradley, D.W., Ortega-Sanchez, C., Tyrrel, A.M.: Embryonics+Immunotronics: A bioinspired approach to fault tolerances. In: Proceedings of the 2nd NASA/DoD Workshop on Evolvable Hardware (2000)

    Google Scholar 

  • Bray, D.: Protein molecules as computational elements in living cells. Nature 376, 307–312 (1995)

    Article  Google Scholar 

  • Burgess, N., Recce, M., O’Keefe, J.: A model of hippocampal function. Neural Networks 7, 1065–1081 (1994)

    Article  MATH  Google Scholar 

  • Caporale, L.H.: Is there a higher level genetic code that directs evolution? Molecular and Cellular Biochemistry 64, 5–13 (1984)

    Article  Google Scholar 

  • Carbone, A., Seeman, N.C.: Circuits and programmable self-assembling DNA structures. PNAS 99, 12577–12582 (2002a)

    Article  MathSciNet  Google Scholar 

  • Carbone, A., Seeman, N.C.: A route to fractal DNA assembly. Natural Computing 1, 469–480 (2002b)

    Article  MATH  MathSciNet  Google Scholar 

  • Cariani, P.: On the Design of Devices with Emergent Semantic Functions. Ph D Dissertation, Binghamton University (1989)

    Google Scholar 

  • Cariani, P.: To evolve an ear: epistemological implications of Gordon Pask’s electrochemical devices. Systems Research 10, 19–33 (1993)

    Article  Google Scholar 

  • Cariani, P.: Towards an evolutionary semiotics: the emergence of new sign functions in organisms and devices. In: Van de Vijver, G., Salthe, S., Delpos, M. (eds.) Evolutionary Systems, pp. 359–377. Kluwer, Dordrecht (1998)

    Google Scholar 

  • Cariani, P.: Symbols and dynamics in the brain. Biosystems 60, 59–83 (2001)

    Article  Google Scholar 

  • Carpenter, G., Grossberg, S.: ART2: Selforganization of stable category recognition codes for analog input patterns. Applied Optics 26, 4919–4930 (1987)

    Article  Google Scholar 

  • Cheung, P., Berlin, A., Biegelsen, D., Jackson, W.: Batch fabrication of pneumatic valve arrays by combining MEMS with PCB technology. In: Symposium on Micro-Mechanical Systems, ASME, Dallas, TX, 62, pp. 39–46 (1997)

    Google Scholar 

  • Chomsky, N.: Cartesian Linguistics. Harper & Row, New York (1966)

    Google Scholar 

  • Cook, M., Rothemund, P.W.K., Winfree, E.: Self-assembled circuit patterns. In: Chen, J., Reif, J.H. (eds.) DNA 2003. LNCS, vol. 2943, pp. 91–107. Springer, Heidelberg (2004)

    Google Scholar 

  • Damasio, A.R.: The brain binds entities and events by multiregional activation from convergence zones. Neural Comput. 1, 123–132 (1989)

    Article  Google Scholar 

  • Danckwerts, H.J., Neubert, D.: Symmetries of genetic code-doublets. J. Mol. Evol. 5, 327–332 (1975)

    Article  Google Scholar 

  • Dasgupta, D., McGregor, D.R.: Designing Neural Networks using the Structured Genetic Algorithm. In: Proceedings of the International Conference on Artificial Neural Networks (ICANN), Brighton, UK (1992)

    Google Scholar 

  • Dewar, R.C.: Informational theory explanation of the fluctuation theorem, maximum entropy production, and self-organized criticality in non-equilibrium stationary states. J. Phys. A 36, 631–641 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  • Di Marzo Serugendo, G., Fitzgerald, J., Romanovsky, A., Guelfi, N.: A Generic Framework for the Engineering of Self-Adaptive and Self-Organising Systems. Technical Report CS-TR-1018, School of Computing Science, University of Newcastle (2007)

    Google Scholar 

  • Dittrich, P.: The Bio-Chemical Information Processing Metaphor as a Programming Paradigm for Organic Computing. In: ARCS Workshops, pp. 95–99 (2005)

    Google Scholar 

  • Dittrich, P., Ziegler, J., Banzhaf, W.: Artificial chemistries-a review. Artificial Life 7(3), 225–275 (2001)

    Article  Google Scholar 

  • Doursat, R.: A Contribution to the Study of Representations in the Nervous System and in Artificial Neural Networks. Ph D Thesis, University Paris (1991)

    Google Scholar 

  • Doursat, R.: Of tapestries, ponds and RAIN. Toward fine-grain mesoscopic neurodynamics in excitable media. In: International Workshop on nonlinear brain dynamics for computational intelligence. Salt Lake City, USA (2007)

    Google Scholar 

  • Doursat, R., Bienenstock, E.: Neocortical self-structuration as a basis for learning. In: 5th International Conference on Development and Learning, ICDL 2006, Indiana University, Bloomington, IN (2006)

    Google Scholar 

  • Eigen, M., Schuster, P.: The hypercycle a principle of natural self-organization. Springer, Berlin (1979)

    Google Scholar 

  • Eigen, M., Winkler-Oswatitsch, R.: Transfer-RNA: The early adaptor. Naturwiss 68, 217–228 (1981)

    Article  Google Scholar 

  • Elman, J.L.: Finding structure in time. Cognitive Science 14, 179–211 (1990)

    Article  Google Scholar 

  • Elman, J.L.: Learning and development in neural networks:The importance of starting small. Cognition 48, 71–99 (1993)

    Article  Google Scholar 

  • Erickson, D., Li, D.: Integrated microfluidic devices. Analytica Chimica Aca. 507, 11–26 (2004)

    Article  Google Scholar 

  • Findley, G.L., Findley, A.M., McGlynn, S.P.: Symmetry characteristics of the genetic code. Proc. Natl. Acad. Sci. USA 79, 7061–7065 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  • Fodor, J.A., Pylyshyn, Z.: Connectionism and cognitive architecture: a critical analysis. Cognition 28(1/2), 3–71 (1988)

    Article  Google Scholar 

  • von Foerster, H.: What is memory that it may have hindsight and foresight as well? In: Bogoch, S. (ed.) The Future of the Brain Sciences, pp. 19–65, 89–95. Plenum Press, New York (1969)

    Google Scholar 

  • Forcey, S.: 2-fold operads Young diagrams and dendritic growth, University Research Symposium, Tennessee State University (2008)

    Google Scholar 

  • Freeman, W.J.: Neurodynamics. An exploration of mesoscopic brain dynamics. Springer, London (2000)

    MATH  Google Scholar 

  • Fritzke, B.: Growing cell structure-a self organizing network for unsupervised and supervised learning. Neural Networks 7(9), 1441–1460 (1994)

    Article  Google Scholar 

  • Geard, N., Wiles, J.: Structure and dynamics of a gene network model incorporating small RNAs. In: IEEE Congress on Evolutionary Computation, pp. 199–206 (2003)

    Google Scholar 

  • Goranovic, G., Rasmussen, S., Nielsen, P.E.: Artificial life forms in microfluidic systems. In: Proceedings microTAS 2006, Tokyo, Japan, vol. 2, p. 1408 (2006)

    Google Scholar 

  • Gould, S.J.: The paradox of the first tier: an agenda for paleobiology. Paleobiology 11, 2–12 (1985)

    Google Scholar 

  • Halford, G.S., Wilson, W.H., Phillips, S.: Processing capacity defined by relational complexity. Implications for comparative, developmental and cognitive psychology. Behavioural and Brain Sciences 21(6), 803–831 (1998)

    Google Scholar 

  • Harding, S.: Evolution in Materio. Ph D Thesis University of York (2005)

    Google Scholar 

  • Haronian, D., Lewis, A.: Elements of a unique bacteriorodopsib neural network architecture. Applied Optics 30, 597–608 (1991)

    Article  Google Scholar 

  • Hartman, H.: Speculations on the evolution of the genetic code. Origins of Life 6, 423–427 (1975)

    Article  Google Scholar 

  • Healy, M.J., Caudell, T.P.: Ontologies and worlds in category theory: Implications for neural systems. Axiomathes 16(1), 165–214 (2006)

    Article  Google Scholar 

  • Hjelmfelt, A., Weinberger, E.D., Ross, J.: Chemical implementation of finite-state machines. PNAS USA 89, 383–387 (1992)

    Article  Google Scholar 

  • Hummel, J.E., Biederman, I.: Dynamic binding in a neural network for shape recognition. Psychological Review 99, 480–517 (1992)

    Article  Google Scholar 

  • Hummel, J.E., Choplin, J.M.: Toward an integrated account of reflexive and reflective reasoning. In: Gleitman, L., Joshi, A.K. (eds.) Proceedings of the Twenty Second Annual Conference of the Cognitive Science Society, pp. 232–237. LEA, Mahwah (2000)

    Google Scholar 

  • Hummel, J.E., Holyoak, K.J.: Distributed representation of structure. A theory of analogical access and mapping. Psychological Review 104, 427–466 (1997)

    Article  Google Scholar 

  • Inhelder, B., Piaget, J.: The Growth of Logical Thinking from Childhood to Adolescence. Basic Books, New York (1958)

    Book  Google Scholar 

  • Iordache, O.: Evolvable Designs of Experiments Applications for Circuits. J. Wiley VCH, Weinheim (2009)

    Book  Google Scholar 

  • Jacob, F., Monod, J.: On the regulation of gene activity. Cold Spring Harbor Symp. Quant. Biol. 26, 193–211 (1961)

    Google Scholar 

  • Jimenez-Montano, M.A.: Protein evolution drives the evolution of the genetic code and vice versa. Biosystems 54, 47–64 (1999)

    Article  Google Scholar 

  • Jimenez-Montano, M.A., de la Mora-Basanez, R., Poschel, T.: Poschel T The hypercube structure of the genetic code explains conservative and non-conservative amino acid substitutions in vivo and in vitro. Biosystems 39, 117–125 (1996)

    Article  Google Scholar 

  • Kargupta, H.: A striking property of genetic-code like transformations. Complex Systems 13, 1–32 (2001)

    MATH  MathSciNet  Google Scholar 

  • Katis, P., Sabadini, N., Walters, R.F.C.: On the algebra of systems with feedback & boundary. Rendiconti del Circolo Matematico di Palermo Serie II, Suppl. 63, 123–156 (2000)

    Google Scholar 

  • Keller, R., Banzhaf, W.: The evolution of genetic code in genetic programming. In: Proc. Genetic and Evolutionary Computation Conf., pp. 077–1082. Morgan Kaufmann Publishers, San Francisco (1999)

    Google Scholar 

  • Kitano, H.: Designing neural network using genetic algorithm with graph generation system. Complex Systems 4, 461–476 (1990)

    MATH  Google Scholar 

  • Koonin, E.V., Novozhilov, A.S.: Origin and evolution of the genetic code: The universal enigma. IUBMB Life 61(2), 99–111 (2009)

    Article  Google Scholar 

  • Koza, J.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  • Kuhn, H., Kuhn, C.: Diversified world: drive of life’s origin? Angew. Chem. International 42, 262–266 (2003)

    Article  Google Scholar 

  • Kuhn, H., Waser, J.: Molecular self-organization and the origin of life. Angew. Chem. Int. Ed. Engl. 20, 500–520 (1981)

    Article  Google Scholar 

  • Kuhn, H., Waser, J.: Hypothesis on the origin of genetic code. FEBS Letters 352, 259–264 (1994)

    Article  Google Scholar 

  • Kuhnert, L., Algadze, K.I., Krinsky, V.I.: Image processing using light-sensitive chemical waves. Nature 337, 244–247 (1989)

    Article  Google Scholar 

  • Lehn, J.M.: Supramolecular chemistry- from molecular information towards self-organization and complex matter. Reports on Progress in Physics 67, 249–265 (2004)

    Article  Google Scholar 

  • Lindenmayer, A.: Mathematical models for cellular interaction in development, I, II. J. Theor. Biol. 18, 280–315 (1968)

    Article  Google Scholar 

  • Lovell, C.J., Jones, G., Zauner, K.P.: Autonomous Experimentation: Coupling Machine Learning with Computer Controlled Microfluidics. In: ELRIG Drug Discovery, Liverpool, September 7-8 (2009)

    Google Scholar 

  • Maass, W.: Liquid computing. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds.) CiE 2007. LNCS, vol. 4497, pp. 507–516. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  • Macias, N.J.: The PIG paradigm: The design and use of a massively parallel fine grained self-reconfigurable infinitely scalable architecture. In: Proceedings First NASA/DoD Workshop on Evolvable Hardware (1999)

    Google Scholar 

  • Mahalik, N.P.: Micromanufacturing and Nanotechnology. Springer, New York (2005)

    Google Scholar 

  • Mallot, H.A.: Spatial cognition: behavioral competences, neural mechanisms and evolutionary scaling. Kognitionwissenchaft 8, 40–48 (2006)

    Article  Google Scholar 

  • von der Malsburg, C.: Am I thinking assemblies? In: Palm, G., Aertsen, A. (eds.) Brain theory, pp. 161–176. Spinger, NY (1986)

    Google Scholar 

  • von der Malsburg, C.: The correlation theory of brain function. In: Domany, E., van Hemmen, J.L., Schulten, K. (eds.) Models of Neural Networks II: Temporal Aspects of Coding and Information Processing in Biological Systems, pp. 95–119. Springer, New York (1994)

    Google Scholar 

  • von der Malsurg, C.: Vision as an exercise in organic computing. GI Jahrestagung (2), 631–635 (2004)

    Google Scholar 

  • Mange, D., Sanchez, E., Stauffer, A., Tempesti, G., Marchal, P., Piguet, C.: Embryonics: A new methodology for designing Field-Programmable Gate Arrays with Self-Repair and Self-Replicating Properties. IEEE Transactions on VLSI Systems 6(3), 387–399 (1998)

    Article  Google Scholar 

  • Mange, D., Stauffer, A., Petraglio, E., Tempesti, E.: Self-replicating loop with universal construction. Physica D 191, 178–192 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  • Mann, S. (ed.): Biomimetic Materials Chemistry. VCH, Weinheim (1996)

    Google Scholar 

  • Matsumaru, N., Dittrich, P.: Organization-oriented chemical programming for the organic design of distributed computing systems. In: Proc. of BIONETICS 2006, Cavalese, December 11-13. IEEE, Los Alamitos (2006)

    Google Scholar 

  • Miller, J.F.: Evolution in materio. In: International Conference on Evolvable Systems, Prague, Czech Republic (2008)

    Google Scholar 

  • Miller, J.F., Downing, K.: Evolution in materio: Looking beyond the silicon box. In: Proceedings of the 2002 NASA/DoD Conference on Evolvable Hardware, pp. 167–176. IEEE Computer Society Press, Los Alamitos (2002)

    Chapter  Google Scholar 

  • Müller-Schloer, C., von der Malsburg, C., Wurtz, R.P.: Organic Computing. Informatik Spektrum (27), 332–336 (2004)

    Google Scholar 

  • Nikolajewa, S., Friedel, M., Beyer, A., Wilhelm, T.: The new classification scheme of the genetic code, tRNA usage and early code evolution. J. Bioinf. Comput. Biol. 4, 609–620 (2006)

    Article  Google Scholar 

  • Nolfi, S., Parisi, D.: Genotypes for Neural Networks. In: Arbib, M.A. (ed.) The Handbook of Brain Theory and Neural Networks. MIT Press, Cambridge (1995a)

    Google Scholar 

  • Nolfi, S., Parisi, D.: Evolving artificial neural networks that develop in time. In: Moran, F., Moreno, A., Merelo, J.J., Chacon, P. (eds.) Advance in Artificial Life, Proceeding of the third European Conference on Artificial Life. Springer, Heidelberg (1995b)

    Google Scholar 

  • Nolfi, S., Parisi, D.: Neural networks in an artificial life perspective. In: Gerstner, W., Germond, A., Hasler, M., Nicoud, J.D. (eds.) Proceedings of the 7th International Conference on Artificial Neural Networks (ICANN 1997), pp. 733–738. Springer, Berlin (1997)

    Google Scholar 

  • Nolfi, S., Tani, J.: Extracting regularities in space and time through a cascade of prediction networks: The case of a mobile robot navigating in a structured environment. Connection Science 2(11), 129–152 (1999)

    Google Scholar 

  • van Noort, D., Wagler, P., McCaskill, J.S.: The role of microreactors in molecular computing. Smart Mater. Struct. 11, 756–760 (2002)

    Article  Google Scholar 

  • Patel, A.: The triple genetic code had a doublet predecessor. J.Theor. Biol. 233, 527–532 (2005)

    Article  Google Scholar 

  • Pato, R.C., Toh, C.-H.: Computational aspects of protein functionality. Comp. Funct. Genom. 5, 85–90 (2004)

    Article  Google Scholar 

  • Pattee, H.H.: Evolving self-reference: matter, symbols, and semantic closure. Communication and Cognition-Artificial Intelligence 12(1-2), 9–28 (1995)

    Google Scholar 

  • Pattee, H.H.: Causation, control and the evolution of complexity. In: Anderson, P.B., et al. (eds.) Downward Causation, pp. 63–77. Aarhus University Press, Aarhus (2000)

    Google Scholar 

  • Perlwitz, M.D., Burks, C., Waterman, M.S.: Pattern Analysis of the Genetic Code. Advances in Applied Mathematics 9, 7–21 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  • Pietzowski, A., Satzger, B., Trumler, W., Ungerer, T.: A bioinspired approach for self-protecting in organic middleware with artificial antibodies. In: de Meer, H., Sterbenz, J.P.G. (eds.) IWSOS 2006. LNCS, vol. 4124, pp. 202–215. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  • Plate, T.: Holographic Reduced Representations. IEEE Transactions of Neural Networks 6, 623–641 (1995)

    Article  Google Scholar 

  • Pollack, J.B.: Recursive Distributed Representations. Artificial Intelligence 46, 77–105 (1990)

    Article  Google Scholar 

  • Prigogine, I.: From Being into Becoming. W. H. Freeman, San Francisco (1980)

    Google Scholar 

  • Quick, T., Dautenhahn, K., Nehaniv, C., Roberts, G.: The Essence of Embodiment: A Framework for Understanding and Exploiting Structural Coupling Between System and Environment. In: Proc. Third International Conference on Computing Anticipatory Systems, Liège, Belgium (CASYS 1999) (1999)

    Google Scholar 

  • Rasmussen, S., Chen, L., Deamer, D., Krakauer, D.C., Packard, N.H., Stadler, P.F., Bedau, M.A.: Transition from nonliving to living matter. Science 303, 963–965 (2004)

    Article  Google Scholar 

  • Rocha, L.M.: Artificial semantically closed objects, Communication and Cognition. Artificial Intelligence 12(1-2), 63–90 (1995)

    MathSciNet  Google Scholar 

  • Rocha, L.M.: Evidence Sets and Contextual Genetic Algorithms: Exploring Uncertainty, Context and Embodiment in Cognitive and Biological Systems, Ph.D. Dissertation, Binghamton University (1997)

    Google Scholar 

  • Ronneberg, T., Landweber, L.F., Freeland, S.J.: Testing a biosynthetic theory of the genetic code: fact or artifact? PNAS 97(25), 13690–13695 (2000)

    Article  Google Scholar 

  • Schmajuk, N.A., Thieme, A.D.: Purposive behavior and cognitive mapping: An adaptive neural network. Biological Cybernetics 67, 165–174 (1992)

    Article  MATH  Google Scholar 

  • Schrauwen, B., Verstraeten, D., van Campenhout, J.: An overview of reservoir computing theory, applications and implementations. In: Proceedings of the 15th European Symposium on Artificial Neural Networks, pp. 471–482 (2007)

    Google Scholar 

  • Shastri, L., Ajjanagadde, V.: From simple associations to systematic reasoning: A connectionist encoding of rules, variables and dynamic bindings using temporal synchrony. Behavioral and Brain Sciences 16(3), 417–493 (1993)

    Article  Google Scholar 

  • Siegmund, E., Heine, B., Schulmeyer, P.: Molecular electronics: The first steps towards a new technology. Int. J. of Electronics 69, 145–152 (1990)

    Article  Google Scholar 

  • Spiro, P.A., Parkinson, J.S., Othmer, H.G.: A model of excitation and adaptation in bacterial chemotaxis. Proc. Natl. Acad. Sci. USA 94, 7263–7268 (1997)

    Article  Google Scholar 

  • Suzuki, H., Sawai, H.: Chemical genetic algorithms-Coevolution between codes and code translation. In: Artificial Life VIII, pp. 164–172. MIT Press, Cambridge (2002)

    Google Scholar 

  • Tangen, U., Wagler, P.F., Chemnitz, S., Goranovic, G., Maeke, T., McCaskill, J.S.: An electronically controlled microfluidics approach towards artificial cells. Complexus 3, 48–57 (2006)

    Article  Google Scholar 

  • Taylor, E.G., Hummel, J.E.: Finding similarity in a model of relational reasoning. Cognitive Systems Research 10, 229–239 (2009)

    Article  Google Scholar 

  • Taylor, T.: Creativity in evolution: Individuals, Interactions and Environments. In: Bentley, P.J., Corne, D.W. (eds.) Creative Evolutionary Systems. Morgan Kaufmann, San Fransisco (2002)

    Google Scholar 

  • Thompson, A.: Hardware Evolution: Automatic design of electronic circuits in reconfigurable hardware by artificial evolution. Springer, Heidelberg (1998)

    Google Scholar 

  • Trifonov, E.N.: Elucidating sequence codes. Three codes for evolution. Annals of the NY. Acad. Sci. 870, 330–338 (1999)

    Article  Google Scholar 

  • Trifonov, E.N.: Consensus temporal order of amino acids and evolution of the triplet code. Gene 261, 139–151 (2000)

    Article  Google Scholar 

  • Trullier, O., Meyer, J.A.: Biomimetic Navigation Models and Strategies in Animats. AI Commun. 10(2), 79–92 (1997)

    Google Scholar 

  • von Uexküll, J.: Theoretische Biologie. Frankfurt a. M.: Suhrkamp Taschenbuch Wissenschaft, xxiv+378 (1973)

    Google Scholar 

  • Verpoorte, E., de Rooij, N.F.: Microfluidics meets MEMS. Proc. of the IEEE. 91, 930–953 (2003)

    Article  Google Scholar 

  • Virgo, N., Harvey, I.: Adaptive growth processes: a model inspired by Pask’s ear. In: Bullock, S., Noble, J., Watson, R.A., Bedau, M.A. (eds.) Proceedings of the Eleventh International Conference on Artificial Life, pp. 656–661. MIT Press, Cambridge (2008)

    Google Scholar 

  • Vsevolodov, N.: Biomolecular Electronics, an Introduction via Photosensitive Proteins. Birkhaeuser, Boston (1998)

    Google Scholar 

  • Zachary, W., Le Mentec, J.C.: Incorporating metacognitive capabilities in synthetic cognition. In: Proceedings of The Ninth Conference on Computer Generated Forces and Behavioral Representation, Orlando, FL, pp. 513–521 (2000)

    Google Scholar 

  • Weberndorfer, G., Hofacker, I.L., Stadler, P.F.: On the evolution of primitive genetic codes. Orig. Life Evol. Biosph. 33(4-5), 491–514 (2003)

    Article  Google Scholar 

  • Wilhelm, T., Nikolajewa, S.L.: A new classification scheme of the genetic code. J. Mol. Evol. 59, 598–605 (2004)

    Article  Google Scholar 

  • Wilson, H.W., Halford, G.S.: Robustness of Tensor Product networks using distributed representations. In: Proceedings of the Fifth Australian Conference on Neural Networks (ACNN 1994), pp. 258–261 (1994)

    Google Scholar 

  • Winfree, E.: Algorithmic self-assembly of DNA: Theoretical motivations and 2d assembly experiments. Journal of Biomolecular Structure & Dynamics 11, 263–270 (2000)

    Google Scholar 

  • Wong, J.T.: A co-evolution theory of the genetic code. Proc. Natl. Acad. Sci. USA 72, 1909–1912 (1975)

    Article  Google Scholar 

  • Wu, H.L., Bagby, S., van der Elsen, J.M.: Evolution of the genetic triplet code via two types of doublet codons. J. Mol. Evol. 61, 54–64 (2005)

    Article  Google Scholar 

  • Yao, X.: Evolving Artificial Neural Networks. Proceeding of the IEEE 87(9), 1423–1447 (1999)

    Article  Google Scholar 

  • Zauner, K.P.: Molecular Information Technology. Critical Reviews in Solid State and Material Sciences 30(1), 33–69 (2005)

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Iordache, O. (2010). Biosystems and Bioinspired Systems. In: Polystochastic Models for Complexity. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10654-5_4

Download citation

Publish with us

Policies and ethics