Skip to main content

The N, O, S Isotopes of Oxy-Anions in Ice Cores and Polar Environments

  • Chapter
  • First Online:
Handbook of Environmental Isotope Geochemistry

Part of the book series: Advances in Isotope Geochemistry ((ADISOTOPE))

Abstract

For more than 60 years, ice from the polar caps has been used to unravel the evolution of our past climate and environment. Throughout technological improvements, climate researchers have gradually adapted their scientific tools to study the isotope content of the impurities present in it, with the hope to gather more and better information of the Earth’s shattered history. In this chapter, we present an overview of the techniques and studies which use stable isotope analysis to gain new insight. This domain has become so vast that we have limited our presentation to the recent analysis of the two major oxy-anions present in snow: sulfate and nitrate. These species are characteristic of the sulfur and nitrogen cycles. Describing the results obtained on ice without discussing the present atmosphere make little sense as ice is precisely used as a proxy for our past atmosphere. Consequently, beyond the analytical methods to measure the sulfur, nitrogen and oxygen isotopes of sulfate and nitrate, this chapter presents the results obtained at the interface between atmosphere, snow and ice with a focus on polar regions. The current state-of-the-art is presented for these two oxy-anions, including their non-mass-dependent isotope effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander B, Savarino J, Barkov NI et al (2002) Climate driven changes in the oxidation pathways of atmospheric sulfur. Geophys Res Lett. doi:10.1029/2002gl014879

    Article  Google Scholar 

  • Alexander B, Thiemens MH, Farquhar J et al (2003) East Antarctic ice core sulfur isotope measurements over a complete glacial-interglacial cycle. J Geophys Res. doi:10.1029/2003jd003513

    Article  Google Scholar 

  • Alexander B, Savarino J, Kreutz KJ et al (2004) Impact of preindustrial biomass-burning emissions on the oxidation pathways of tropospheric sulfur and nitrogen. J Geophys Res. doi:10.1029/2003jd004218

    Article  Google Scholar 

  • Alexander B, Park RJ, Jacob DJ et al (2005) Sulfate formation in sea-salt aerosols: constraints from oxygen isotopes. J Geophys Res. doi:10.1029/2004jd005659

    Article  Google Scholar 

  • Alexander B, Park RJ, Jacob DJ et al (2009a) Transition metal-catalyzed oxidation of atmospheric sulfur: global implications for the sulfur budget. J Geophys Res. doi:10.1029/2008jd010486

    Article  Google Scholar 

  • Alexander B, Hastings MG, Allman DJ et al (2009b) Quantifying atmospheric nitrate formation pathways based on a global model of the oxygen isotopic composition (delta O-17) of atmospheric nitrate. Atmos Chem Phys. doi:10.5194/acp-9-5043-2010

    Article  Google Scholar 

  • Amberger A, Schmidt HL (1987) The natural isotope content of nitrate as an indicator of its origin. Geochim Cosmochim Acta 51:2699–2705

    Google Scholar 

  • Amoroso A, Domine F, Esposito G et al (2010) Microorganisms in dry polar snow are involved in the exchanges of reactive nitrogen species with the atmosphere. Environ Sci Technol. doi:10.1021/es9027309

    Article  Google Scholar 

  • Bailey SA, Smith JW (1972) Improved method for preparation of sulfur-dioxide from barium sulfate for isotope ratio studies. Anal Chem 44:1542–1543

    Google Scholar 

  • Bao HM, Marchant DR (2006) Quantifying sulfate components and their variations in soils of the McMurdo Dry Valleys, Antarctica. J Geophys Res. doi:10.1029/2005jd006669

    Article  Google Scholar 

  • Bao HM, Thiemens MH, Farquhar J et al (2000) Anomalous O-17 compositions in massive sulphate deposits on the Earth. Nature 406:176–178

    Google Scholar 

  • Bao HM, Michalski GM, Thiemens MH (2001) Sulfate oxygen-17 anomalies in desert varnishes. Geochim Cosmochim Acta 65:2029–2036

    Google Scholar 

  • Baroni M, Thiemens MH, Delmas RJ et al (2007) Mass-independent sulfur isotopic compositions in stratospheric volcanic eruptions. Science 315:84–87

    Google Scholar 

  • Baroni M, Savarino J, Cole-Dai JH et al (2008) Anomalous sulfur isotope compositions of volcanic sulfate over the last millennium in Antarctic ice cores. J Geophys Res. doi:10.1029/2008jd010185

    Article  Google Scholar 

  • Baublys KA, Golding SD, Young E et al (2004) Simultaneous determination of delta(33) SV-CDT and delta S-34(V-CDT) using masses 48, 49 and 50 on a continuous flow isotope ratio mass spectrometer. Rapid Commun Mass Spectrom. doi:10.1002/rcm.1681

    Article  Google Scholar 

  • Beaudoin G, Taylor BE (1994) High-precision and spatial-resolution sulfur isotope analysis using miles laser microprobe. Geochim Cosmochim Acta 58:5055–5063

    Google Scholar 

  • Bender M, Sowers T, Brook E (1997) Gases in ice cores. Proc Natl Acad Sci U S A 94:8343–8349

    Google Scholar 

  • Bhattacharya SK, Thiemens MH (1989) New evidence for symmetry dependent isotope effect: O + CO reaction. Z Naturforsch 44A:435–444

    Google Scholar 

  • Bhattacharya SK, Pandey A, Savarino J (2008) Determination of intramolecular isotope distribution of ozone by oxidation reaction with silver metal. J Geophys Res. doi:10.1029/2006JD008309

    Article  Google Scholar 

  • Bindeman IN, Eiler JM, Wing BA et al (2007) Rare sulfur and triple oxygen isotope geochemistry of volcanogenic sulfate aerosols. Geochim Cosmochim Acta. doi:10.1016/j.gca.2007.01.026

    Article  Google Scholar 

  • Blunier T, Floch GL, Jacobi HW et al (2005) Isotopic view on nitrate loss in Antarctic surface snow. Geophys Res Lett. doi:10.1029/2005gl023011

    Article  Google Scholar 

  • Böhlke JK, Mroczkowski SJ, Coplen TB (2003) Oxygen isotopes in nitrate: new reference materials for 18O:17O:16O measurements and observations on nitrate-water equilibration. Rapid Commun Mass Spectrom 17:1835–1846

    Google Scholar 

  • Böhlke JK, Smith RL, Hannon JE (2007) Isotopic analysis of N and O in nitrite and nitrate by sequential selective bacterial reduction to N2O. Anal Chem. doi:10.1021/ac070176k

    Article  Google Scholar 

  • Bordat P, Freyer HD, Kobel K et al (1992) HPLC preparation of nitrate from ice cores for mass spectrometric N-15/N-14 measurements. Fresenius J Anal Chem 344:279–282

    Google Scholar 

  • Boschetti T, Iacumin P (2005) Continuous-flow delta O-18 measurements: new approach to standardization, high-temperature thermodynamic and sulfate analysis. Rapid Commun Mass Spectrom. doi:10.1002/rcm.2161

    Article  Google Scholar 

  • Brand WA, Coplen TB, Aerts-Bijma AT et al (2009) Comprehensive inter-laboratory calibration of reference materials for delta O-18 versus VSMOW using various on-line high-temperature conversion techniques. Rapid Commun Mass Spectrom. doi:10.1002/rcm.3958

    Article  Google Scholar 

  • Brauer K, Strauch G (2000) An alternative procedure for the O-18 measurement of nitrate oxygen. Chem Geol 168:283–290

    Google Scholar 

  • Bremner JM, Keeney DR (1965) Steam distillation methods for determination of ammonium nitrate and nitrite. Anal Chim Acta 32:485–490

    Google Scholar 

  • Bremner JM, Keeney DR (1966) Determination and isotope-ratio analysis of different forms of nitrogen in soils.3. Exchangeable ammonium nitrate and nitrite by extraction-distillation methods. Soil Sci Soc Am Proc 30:577–587

    Google Scholar 

  • Burkhart JF, Hutterli M, Bales RC et al (2004) Seasonal accumulation timing and preservation of nitrate in firn at Summit, Greenland. J Geophys Res. doi:19310.11029/12004JD004658

    Google Scholar 

  • Calhoun JA, Bates TS, Charlson RJ (1991) Sulfur isotope measurements of submicrometer sulfate aerosol particles over the Pacific Ocean. Geophys Res Lett 18:1877–1880

    Google Scholar 

  • Casciotti KL, Sigman DM, Hastings MG et al (2002) Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method. Anal Chem. doi:10.1021/ac020113w

    Article  Google Scholar 

  • Casciotti KL, Böhlke JK, McIlvin MR et al (2007) Oxygen isotopes in nitrite: analysis, calibration, and equilibration. Anal Chem. doi:10.1021/ac061598h

    Article  Google Scholar 

  • Castleman AWJ, Munkelwitz HR, Manowitz B (1974) Isotopic studies of the sulfur component of the stratospheric aerosol layer. Tellus 26:222–234

    Google Scholar 

  • Chabala JM, Soni KK, Li J et al (1995) High-resolution chemical imaging with scanning ion probe SIMS. Int J Mass Spectrom Ion Process 143:191–212

    Google Scholar 

  • Chakraborty S, Chakraborty S (2003) Isotopic fractionation of the O-3-nitric oxide reaction. Curr Sci 85:1210–1212

    Google Scholar 

  • Chang CCY, Langston J, Riggs M et al (1999) A method for nitrate collection for delta N-15 and delta O-18 analysis from waters with low nitrate concentrations. Can J Fish Aquat Sci 56:1856–1864

    Google Scholar 

  • Chappellaz J, Fung IY, Thompson AM (1993) The atmospheric methane increase since the Last Glacial Maximum 1. Source estimates. Tellus 45B:228–241

    Google Scholar 

  • Cheng HH, Bremner JM (1966) Determination and isotope-ratio analysis of different forms of nitrogen in soils 2. A simplified procedure for isotope-ratio analysis of soil nitrogen. Soil Sci Soc Am Proc 30:450–454

    Google Scholar 

  • Chmura WM, Rozanski K, Kuc T et al (2009) Comparison of two methods for the determination of nitrogen and oxygen isotope composition of dissolved nitrates. Nukleonika 54:17–23

    Google Scholar 

  • Christensen S, Tiedje JM (1988) Sub-parts-per-billion nitrate method – use of an N2O-producing denitrifier to convert NO -3 or (NO -3 )-N-15 to N2O. Appl Environ Microbiol 54:1409–1413

    Google Scholar 

  • Cliff SS, Thiemens MH (1994) High-precision isotopic determination of the 18O/16O and 17O/16O ratios in nitrous oxide. Anal Chem 17:2791–2793

    Google Scholar 

  • Cole-Dai J, Ferris D, Lanciki A et al (2009) Cold decade (AD 1810-1819) caused by Tambora (1815) and another (1809) stratospheric volcanic eruption. Geophys Res Lett. doi:10.1029/2009gl040882

    Article  Google Scholar 

  • Coleman ML, Moore MP (1978) Direct reduction of sulfates to sulfur-dioxide for isotopic analysis. Anal Chem 50:1594–1595

    Google Scholar 

  • Coplen TB, Böhke JK, Casciotti KL (2004) Using dual-bacterial denitrification to improve delta N-15 determinations of nitrates containing mass-independent 17O. Rapid Commun Mass Spectrom 18:245–250

    Google Scholar 

  • Cortecci G, Longinel A (1970) Isotopic composition of sulfate in rain water, Pisa, Italy. Earth Planet Sci Lett 8:36–40

    Google Scholar 

  • Cosme E, Hourdin F, Genthon C et al (2005) Origin of dimethylsulfide, non-sea-salt sulfate, and methanesulfonic acid in eastern Antarctica. J Geophys Res. doi:D0330210.1029/2004jd004881

    Google Scholar 

  • Craig H, Chou CC, Welhan JA et al (1988) The isotopic composition of methane in polar ice cores. Science 242:1535–1539

    Google Scholar 

  • Dansgaard W, Johnsen SJ, Moller J et al (1969) One thousand centuries of climatic record from camp century on Greenland ice sheet. Science 166:377–381

    Google Scholar 

  • De Angelis M, Petit JR, Savarino J et al (2004) Contributions of an ancient evaporitic-type reservoir to subglacial Lake Vostok chemistry. Earth Planet Sci Lett 222:751–765

    Google Scholar 

  • Dibb JE, Whitlow S (1996) Recent climate anomalie and their impact on snow chemistry at South Pole, 1987–1994. Geophys Res Lett 23:1115–1118

    Google Scholar 

  • Dibb JE, Whitlow SI, Arsenault M (2007) Seasonal variations in the soluble ion content of snow at Summit, Greenland: constraints from three years of daily surface snow samples. Atmos Environ. doi:10.1016/j.atmosenv.2006.12.010

    Article  Google Scholar 

  • Ding Y, Macko P, Romanini D et al (2004) High sensitivity cw-cavity ringdown and Fourier transform absorption spectroscopies of (CO2)-C-13. J Mol Spectrosc. doi:10.1016/j.jms.2004.03.009

    Article  Google Scholar 

  • Dominguez G, Jackson T, Brothers L et al (2008) Discovery and measurement of an isotopically distinct source of sulfate in Earth’s atmosphere. Proc Natl Acad Sci U S A. doi:10.1073/pnas.0805255105

    Article  Google Scholar 

  • Dubey MK, Mohrschladt R, Donahue NM et al (1997) Isotope specific kinetics of hydroxyl radical (OH) with water (H2O): testing models of reactivity and atmospheric fractionation. J Phys Chem 101:1494–1500

    Google Scholar 

  • Elliott EM, Kendall C, Wankel SD et al (2007) Nitrogen isotopes as indicators of NOx source contributions to atmospheric nitrate deposition across the Midwestern and northeastern United States. Environ Sci Technol. doi:10.1021/es070898t

    Article  Google Scholar 

  • Farquhar J, Wing BA (2003) Multiple sulfur isotopes and the evolution of the atmosphere. Earth Planet Sci Lett. doi:10.1016/s0012-821x(03)00296-6

    Article  Google Scholar 

  • Farquhar J, Bao HM, Thiemens M (2000a) Atmospheric influence of Earth’s earliest sulfur cycle. Science 289:756–758

    Google Scholar 

  • Farquhar J, Savarino J, Jackson TL et al (2000b) Evidence of atmospheric sulfur in the Martian regolith from sulfur isotopes in meteorites. Nature 404:50–52

    Google Scholar 

  • Farquhar J, Savarino J, Airieau S et al (2001) Observation of wavelength-sensitive mass-independent sulfur isotope effects during SO2 photolysis: implications for the early atmosphere. J Geophys Res 106:32829–32839

    Google Scholar 

  • Farquhar J, Wing BA, McKeegan KD et al (2002) Mass-independent sulfur of inclusions in diamond and sulfur recycling on early earth. Science 298:2369–2372

    Google Scholar 

  • Fiedler R, Proksch G (1972) Determination of nitrogen content and nitrogen-15 abundance by means of nitrogen gas generated from inorganic and organic materials. Anal Chim Acta 60:277–285

    Google Scholar 

  • Fiedler R, Proksch G (1975) Determination of nitrogen-15 by emission and mass-spectrometry in biochemical analysis – review. Anal Chim Acta 78:1–62

    Google Scholar 

  • Finlayson-Pitts BJ, Pitts JN (2000) Chemistry of the upper and lower atmosphere: theory, experiments and applications. Academic, San Diego

    Google Scholar 

  • Floch GL (2006) Composition isotopique du nitrate dans le névé Antarctique: Avançées et nouvelles perspectives sur les phénomènes post-dépôts. PhD dissertation, University of Bern, Bern

    Google Scholar 

  • Frey MM, Stewart RW, McConnell JR, Bales RC (2005) Atmospheric hydroperoxides in West Antarctica: Links to stratospheric ozone and atmospheric oxidation capacity. Journal of Geophysical Research 110(D23), D23301, doi: 10.1029/2005jd006110

    Google Scholar 

  • Frey MM, Savarino J, Morin S et al (2009) Photolysis imprint in the nitrate stable isotope signal in snow and atmosphere of East Antarctica and implications for reactive nitrogen cycling. Atmos Chem Phys. doi:10.5194/acp-9-8681-2009

    Article  Google Scholar 

  • Freyer HD (1978) Seasonal trends of NH +4 and NO -3 nitrogen isotope composition in rain collected at Julich, Germany. Tellus 30:83–92

    Google Scholar 

  • Freyer HD (1991) Seasonal-variation of N-15-N-14 ratios in atmospheric nitrate species. Tellus 43B:30–44

    Google Scholar 

  • Freyer HD, Kley D, Volzthomas A et al (1993) On the interaction of isotopic exchange processes with photochemical-reactions in atmospheric oxides of nitrogen. J Geophys Res 98:14791–14796

    Google Scholar 

  • Freyer HD, Kobel K, Delmas RJ et al (1996) First results of N-15/N-14 ratios in nitrate from alpine and polar ice cores. Tellus 48B:93–105

    Google Scholar 

  • Friedli H, Moor E, Oeschger H et al (1984) C-13/C-12 ratios in CO2 extracted from Antarctic ice. Geophys Res Lett 11:1145–1148

    Google Scholar 

  • Fritzsche F, Tichomirowa M (2006) Signal improvement in elemental analyzer/continuous flow isotope ratio mass spectrometry for samples with low sulfur contents using a pre-concentration technique for on-line concentration adjustment. Rapid Commun Mass Spectrom. doi:10.1002/rcm.2488

    Article  Google Scholar 

  • Gao X, Thiemens MH (1993a) Variations of the isotopic composition of sulfur in enstatite and ordinary chondrites. Geochim Cosmochim Acta 57:3171–3176

    Google Scholar 

  • Gao X, Thiemens MH (1993b) Isotopic composition and concentration of sulfur in carbonaceous chondrites. Geochim Cosmochim Acta 57:3159–3169

    Google Scholar 

  • Giesemann A, Jager HJ, Norman AL et al (1994) Online sulfur-isotope determination using an elemental analyzer coupled to a mass-spectrometer. Anal Chem 66:2816–2819

    Google Scholar 

  • Granger J, Sigman DM (2009) Removal of nitrite with sulfamic acid for nitrate N and O isotope analysis with the denitrifier method. Rapid Commun Mass Spectrom. doi:10.1002/rcm.4307

    Article  Google Scholar 

  • Granger J, Sigman DM, Prokopenko MG et al (2006) A method for nitrite removal in nitrate N and O isotope analyses. Limnol Oceanogr Methods 4:205–212

    Google Scholar 

  • Grannas AM, Jones AE, Dibb J et al (2007) An overview of snow photochemistry: evidence, mechanisms and impacts. Atmos Chem Phys. doi:10.5194/acp-7-4329-2007

    Article  Google Scholar 

  • Grassineau NV (2006) High-precision EA-IRMS analysis of S and C isotopes in geological materials. Appl Chem. doi:10.1016/j.apgeochem.2006.02.015

    Article  Google Scholar 

  • Grassineau NV, Mattey DP, Lowry D (2001) Sulfur isotope analysis of sulfide and sulfate minerals by continuous flow-isotope ratio mass spectrometry. Anal Chem 73:220–225. doi:10.1021/ac000550f

    Article  Google Scholar 

  • Gunther H, Floss HG, Simon H (1966) Ein vereinfachtes verfahren zur 15N-bestimmung. Fresenius Z Anal Chem 218:401–408

    Google Scholar 

  • Haan D, Martinerie P, Raynaud D (1996) Ice core data of atmospheric carbon monoxide over Antarctica and Greenland during the last 200 years. Geophys Res Lett 23:2235–2238

    Google Scholar 

  • Haberhauer G, Blochberger K (1999) A simple cleanup method for the isolation of nitrate from natural water samples for O isotope analysis. Anal Chem 71:3587–3590

    Google Scholar 

  • Halliday AN, Lee DC, Christensen JN et al (1998) Applications of multiple collector-ICPMS to cosmochemistry, geochemistry, and paleoceanography. Geochim Cosmochim Acta 62:919–940

    Google Scholar 

  • Hammer CU (1977) Past volcanism revealed by Greenland ice sheet impurities. Nature 270:482–486

    Google Scholar 

  • Hastings MG, Sigman DM, Lipschultz F (2003) Isotopic evidence for source changes of nitrate in rain at Bermuda. J Geophys Res. doi:1029/2003JD003789

    Google Scholar 

  • Hastings MG, Steig EJ, Sigman DM (2004) Seasonal variations in N and O isotopes of nitrate in snow at Summit, Greenland: implications for the study of nitrate in snow and ice cores. J Geophys Res. doi:10.1029/2004jd004991

    Article  Google Scholar 

  • Hastings MG, Sigman DM, Steig EJ (2005) Glacial/interglacial changes in the isotopes of nitrate from the Greenland Ice Sheet Project 2 (GISP2) ice core. Glob Biogeochem Cycles. doi:Gb4024, 10.1029/2005gb002502

    Google Scholar 

  • Hastings MG, Jarvis JC, Steig EJ (2009) Anthropogenic impacts on nitrogen isotopes of ice-core nitrate. Science 324:1288. doi:10.1126/science.1170510

    Article  Google Scholar 

  • Heaton THE (1987) N-15/N-14 ratios of nitrate and ammonium in rain at Pretoria, South-Africa. Atmos Environ 21:843–852

    Google Scholar 

  • Heaton THE, Wynn P, Tye AM (2004) Low N-15/N-14 ratios for nitrate in snow in the High Arctic (79 degrees N). Atmos Environ. doi:10.1016/j.atmosphere.2004.06.028

    Article  Google Scholar 

  • Heidenreich JE III, Thiemens MH (1986) A non-mass-dependent oxygen isotope effect in the production of ozone from molecular oxygen: the role of symmetry in isotope chemistry. J Chem Phys 84:2129–2136

    Google Scholar 

  • Hoering T (1955) Variations of nitrogen-15 abundance in naturally occurring substances. Science 122:1233–1234

    Google Scholar 

  • Hoering T (1957) The isotopic composition of the ammonia and the nitrate ion in rain. Geochim Cosmochim Acta 12:97–102

    Google Scholar 

  • Hojberg O, Johansen HS, Sorensen J (1994) Determination of N-15 abundance in nanogram pools of NO -3 and NO -2 by denitrification bioassay and mass-spectrometry. Appl Environ Microbiol 60:2467–2472

    Google Scholar 

  • Holt BD, Kumar R (1991) Oxygen isotope fractionation for understanding the sulphur cycle. In: Krouse HR, Grinenko VA (eds) Stable isotopes: natural and anthropogenic sulphur in the environment, vol 43, SCOPE. Wiley, New York

    Google Scholar 

  • Holt BD, Cunningham PT, Kumar R (1981) Oxygen isotopy of atmospheric sulfates. Environ Sci Technol 15:804–808

    Google Scholar 

  • Honrath RE, Peterson MC, Guo S et al (1999) Evidence of NOx production within or upon ice particles in the Greenland snowpack. Geophys Res Lett 26:695–698

    Google Scholar 

  • Hu GX, Rumble D, Wang PL (2003) An ultraviolet laser microprobe for the in situ analysis of multisulfur isotopes and its use in measuring Archean sulfur isotope mass-independent anomalies. Geochim Cosmochim Acta 67:3101–3118

    Google Scholar 

  • Huff AK, Thiemens MH (1998) O-17/O-16 and O-18/O-16 isotope measurements of atmospheric carbon monoxide and its sources. Geophys Res Lett 25:3509–3512

    Google Scholar 

  • Hulston JR, Thode HG (1965) Variations in S33 S34 and S36 contents of meteorites and their relation to chemical and nuclear effects. J Geophys Res 70:3475–3480

    Google Scholar 

  • Jacobi HW, Weller R, Jones AE et al (2000) Peroxyacetyl nitrate (PAN) concentrations in the Antarctic troposphere measured during the photochemical experiment at Neumayer (PEAN’99). Atmos Environ 34:5235–5247

    Google Scholar 

  • Jamieson RE, Wadleigh MA (1999) A study of the oxygen isotopic composition of precipitation sulphate in eastern Newfoundland. Water Air Soil Pollut 110:405–420

    Google Scholar 

  • Jamieson RE, Wadleigh MA (2000) Tracing sources of precipitation sulfate in eastern Canada using stable isotopes and trace metals. J Geophys Res 105:20549–20556

    Google Scholar 

  • Jarvis JC, Steig EJ, Hastings MG et al (2008) Influence of local photochemistry on isotopes of nitrate in Greenland snow. Geophys Res Lett. doi:10.1029/2008gl035551

    Article  Google Scholar 

  • Jarvis JC, Hastings MG, Steig EJ et al (2009) Isotopic ratios in gas-phase HNO3 and snow nitrate at Summit, Greenland. J Geophys Res. doi:10.1029/2009jd012134

    Article  Google Scholar 

  • Jenkins KA, Bao HM (2006) Multiple oxygen and sulfur isotope compositions of atmospheric sulfate in Baton Rouge, LA, USA. Atmos Environ. doi:10.1016/j.atmosenv.2006.04.010

    Article  Google Scholar 

  • Johnson CA, Mast MA, Kester CL (2001) Use of O-17/O-16 to trace atmospherically-deposited sulfate in surface waters: a case study in alpine watersheds in the Rocky Mountains. Geophys Res Lett 28:4483–4486

    Google Scholar 

  • Johnston JC, Thiemens MH (1997) The isotopic composition of tropospheric ozone in three environments. J Geophys Res 102:25395–25404

    Google Scholar 

  • Jones AE, Weller R, Wolff EW et al (2000) Speciation and rate of photochemical NO and NO2 production in Antarctic snow. Geophys Res Lett 27:345–348

    Google Scholar 

  • Jonsell U, Hansson ME, Morth CM et al (2005) Sulfur isotopic signals in two shallow ice cores from Dronning Maud Land, Antarctica. Tellus 57B:341–350

    Google Scholar 

  • Kaiser J, Hastings MG, Houlton BZ et al (2007) Triple oxygen isotope analysis of nitrate using the denitrifier method and thermal decomposition of N2O. Anal Chem. doi:10.1021/ac061022s

    Article  Google Scholar 

  • Kamber BS, Whitehouse MJ (2007) Micro-scale sulphur isotope evidence for sulphur cycling in the late Archean shallow ocean. Geobiology. doi:10.1111/j.1472-4669.2006.00091.x

    Article  Google Scholar 

  • Karol IL, Frolkis VA, Kiselev AA (1995) Radiative-photochemical modeling of the annually averaged composition and temperature of the global atmosphere during the last glacial and interglacial periods. J Geophys Res 100:7291–7301

    Google Scholar 

  • Keeney DR, Bremner JM (1966) Determination and isotope-ratio analysis of different forms of nitrogen in soils.4. Exchangeable ammonium nitrate and nitrite by direct-distillation methods. Soil Sci Soc Am Proc 30:583–589

    Google Scholar 

  • Kendall C (1998) Tracing nitrogen sources and cycling in catchments. In: Kendall C, McDonnell JJ (eds) Tracers in catchment hydrology. Elsevier Science, Amsterdam

    Google Scholar 

  • Kendall C, Grim E (1990) Combustion tube method for measurement of nitrogen isotope ratios using calcium-oxide for total removal of carbon-dioxide and water. Anal Chem 62:526–529

    Google Scholar 

  • Kiba T, Takagi T, Yoshimura Y et al (1955) Tin (II)-strong phosphoric acid – a new reagent for the determination of sulfate by reduction of hydrogen sulfide. Bull Chem Soc Jpn 28:641–644

    Google Scholar 

  • Komatsu DD, Ishimura T, Nakagawa F et al (2008) Determination of the N-15/N-14, O-17/O-16, and O-18/O-16 ratios of nitrous oxide by using continuous-flow isotope-ratio mass spectrometry. Rapid Commun Mass Spectrom. doi:10.1002/rcm.3493

    Article  Google Scholar 

  • Kornexl B, Medina R, Schmidt HL (1994) A sensitive method for the fast and simultaneous determination of delta-N-15-values and delta-O-18-values in nitrate. Isotopenpraxis 30:215–218

    Google Scholar 

  • Kornexl BE, Gehre M, Hofling R et al (1999) On-line delta O-18 measurement of organic and inorganic substances. Rapid Commun Mass Spectrom 13:1685–1693

    Google Scholar 

  • Krankowsky D, Bartecki F, Klees GG et al (1995) Measurement of heavy isotope enrichment in tropospheric ozone. Geophys Res Lett 22:1713–1716

    Google Scholar 

  • Krankowsky D, Lammerzahl P, Mauersberger E (2000) Isotopic measurements of stratospheric ozone. Geophys Res Lett 27:2593–2595

    Google Scholar 

  • Kunasek SA, Alexander B, Steig EJ et al (2008a) Measurements and modeling of Delta O-17 of nitrate in snowpits from Summit, Greenland. J Geophys Res. doi:10.1029/2008jd010103

    Article  Google Scholar 

  • Kunasek SA, Alexander B, Steig EJ et al (2008b) Reinterpreting Delta O-17 of nitrate in ice cores at high accumulation sites. Geochim Cosmochim Acta 72:A502

    Google Scholar 

  • Kunasek SA, Alexander B, Steig EJ et al (2010) Sulfate sources and oxidation chemistry over the past 1230 years from sulfur and oxygen isotopes of sulfate in a West Antarctic ice core. J Geophys Res. doi:10.1029/2010JD013846

    Article  Google Scholar 

  • Lasaga AC, Otake T, Watanabe Y et al (2008) Anomalous fractionation of sulfur isotopes during heterogeneous reactions. Earth Planet Sci Lett. doi:10.1016/j.epsl.2008.01.016

    Article  Google Scholar 

  • Lee CCW, Thiemens MH (2001) δ17O and δ18O measurement of atmospheric sulfate from a coastal and high alpine region: a mass independent isotopic anomaly. J Geophys Res 106:17359–17374

    Google Scholar 

  • Lee CW, Savarino J, Thiemens MH (2001) Mass independent isotopic composition of atmospheric sulfate: origin and implications for the present and past atmosphere of Earth and Mars. Geophys Res Lett 28:1783–1786

    Google Scholar 

  • Lee CCW, Savarino J, Cachier H et al (2002) Sulfur (S-32, S-33, S-34, S-36) and oxygen (O-16, O-17, O-18) isotopic ratios of primary sulfate produced from combustion processes. Tellus 54B:193–200

    Google Scholar 

  • Legrand MR, Kirchner S (1990) Origins and variations of nitrate in south polar precipitation. J Geophys Res 95:3493–3507

    Google Scholar 

  • Legrand M, Mayewski P (1997) Glaciochemistry of polar ice cores: a review. Rev Geophys 35:219–243

    Google Scholar 

  • Legrand M, Preunkert S, Jourdain B et al (2009) Year-round record of surface ozone at coastal (Dumont d'Urville) and inland (Concordia) sites in East Antarctica. J Geophys Res. doi:10.1029/2008jd011667

    Article  Google Scholar 

  • Luz B, Barkan E (2005) The isotopic ratios O-17/O-16 and O-18/O-16 in molecular oxygen and their significance in biogeochemistry. Geochim Cosmochim Acta. doi:10.1016/j.gca.2004.09.001

    Article  Google Scholar 

  • Lyons JR (2007) Mass-independent fractionation of sulfur isotopes by isotope-selective photodissociation of SO2. Geophys Res Lett. doi:22810.21029/22007GL031031

    Google Scholar 

  • Mann JL, Kelly WR (2005) Measurement of sulfur isotope composition (delta S-34) by multiple-collector thermal ionization mass spectrometry using a S-33-S-36 double spike. Rapid Commun Mass Spectrom. doi:10.1002/rcm.2213

    Article  Google Scholar 

  • Mariotti A (1983) Atmospheric nitrogen is a reliable standard for natural N-15 abundance measurements. Nature 303:685–687

    Google Scholar 

  • Martin E, Bindeman I (2009) Mass-independent isotopic signatures of volcanic sulfate from three supereruption ash deposits in Lake Tecopa, California. Earth Planet Sci Lett. doi:10.1016/j.epsl.2009.03.005

    Article  Google Scholar 

  • Martinerie P, Brasseur GP, Granier C (1995) The chemical composition of ancient atmospheres: a model study constrained by ice core data. J Geophys Res 100:14, 291–214, 304

    Google Scholar 

  • Mather TA, McCabe JR, Rai VK et al (2006) Oxygen and sulphur isotope composition of volcanic sulphate aerosol at the point of emission. J Geophys Res. doi:10.1029/2005JD006584

    Article  Google Scholar 

  • Matthews DE, Hayes JM (1978) Isotope-ratio-monitoring gas chromatography-mass spectrometry. Anal Chem 50:1465–1473

    Google Scholar 

  • Mauersberger K (1987) Ozone isotope measurement in the stratosphere. Geophys Res Lett 14:80–83

    Google Scholar 

  • Mauersberger K, Lammerzahl P, Krankowsky D (2001) Stratospheric ozone isotope enrichments – revisited. Geophys Res Lett 28:3155–3158

    Google Scholar 

  • McCabe JR, Savarino J, Alexander B et al (2006) Isotopic constraints on non-photochemical sulfate production in the Arctic winter. Geophys Res Lett. doi:10.1029/2005gl025164

    Article  Google Scholar 

  • McCabe JR, Thiemens MH, Savarino J (2007) A record of ozone variability in South Pole Antarctic snow: role of nitrate oxygen isotopes. J Geophys Res. doi:10.1029/2006jd007822

    Article  Google Scholar 

  • McIlvin MR, Altabet MA (2005) Chemical conversion of nitrate and nitrite to nitrous oxide for nitrogen and oxygen isotopic analysis in freshwater and seawater. Anal Chem. doi:10.1021/ac050528s

    Article  Google Scholar 

  • McKinney CR, McCrea JM, Epstein S et al (1950) Improvements in mass spectrometers for the measurement of small differences in isotope abundance ratios. Rev Sci Instrum 21:724–730

    Google Scholar 

  • Metzger J (1978) Rapid simultaneous determination of N-15 and total nitrogen by direct coupling of mass-spectrometer and automatic elemental analyzer. Fresenius Z Anal Chem 292:44–45

    Google Scholar 

  • Michalski G (2010) Purification procedure for delta N-15, delta O-18, Delta O-17 analysis of nitrate. Int J Environ Anal Chem. doi:10.1080/03067310902783593

    Article  Google Scholar 

  • Michalski G, Bhattacharya SK (2009) The role of symmetry in the mass independent isotope effect in ozone. Proc Natl Acad Sci U S A. doi:10.1073/pnas.0812755106

    Article  Google Scholar 

  • Michalski G, Savarino J, Bohlke JK et al (2002) Determination of the total oxygen isotopic composition of nitrate and the calibration of a Delta O-17 nitrate reference material. Anal Chem. doi:10.1021/ac0256282

    Article  Google Scholar 

  • Michalski G, Scott Z, Kabiling M et al (2003) First measurements and modeling of Delta O-17 in atmospheric nitrate. Geophys Res Lett. doi:10.1029/2003gl017015

    Article  Google Scholar 

  • Michalski G, Böhlke JK, Thiemens M (2004a) Long term atmospheric deposition as the source of nitrate and other salts in the Atacama Desert, Chile: new evidence from mass-independent oxygen isotopic compositions. Geochim Cosmochim Acta. doi:10.1016/j.gca.2004.04.009

    Article  Google Scholar 

  • Michalski G, Meixner T, Fenn M et al (2004b) Tracing atmospheric nitrate deposition in a complex semiarid ecosystem using Δ17O. Environ Sci Technol. doi:10.1021/es034980

    Article  Google Scholar 

  • Michalski G, Rech J, Thiemens M (2005a) The onset of hyper-aridity in the Atacama Desert: nitrate Delta O-17 as a tracer of soil moisture. Geochim Cosmochim Acta 69:A444

    Google Scholar 

  • Michalski G, Bockheim JG, Kendall C et al (2005b) Isotopic composition of Antarctic Dry Valley nitrate: implications for NOy sources and cycling in Antarctica. Geophys Res Lett. doi:10.1029/2004gl022121

    Article  Google Scholar 

  • Miller CE, Yung YL (2000) Photo-induced isotopic fractionation. J Geophys Res 105:29039–29051

    Google Scholar 

  • Minagawa M, Winter DA, Kaplan IR (1984) Comparison of Kjeldahl and combustion methods for measurement of nitrogen isotope ratios in organic-matter. Anal Chem 56:1859–1861

    Google Scholar 

  • Mohn J, Guggenheim C, Tuzson B et al (2010) A liquid nitrogen-free preconcentration unit for measurements of ambient N2O isotopomers by QCLAS. Atmos Meas Tech 3:609–618

    Google Scholar 

  • Mojzsis SJ, Coath CD, Greenwood JP et al (2003) Mass-independent isotope effects in Archean (2.5 to 3.8 Ga) sedimentary sulfides determined by ion microprobe analysis. Geochim Cosmochim Acta. doi:10.1016/s0016-7037(00)00059-0

    Article  Google Scholar 

  • Moore H (1974) Isotopic measurement of atmospheric nitrogen-compounds. Tellus 26:169–174

    Google Scholar 

  • Moore H (1977) The isotopic composition of ammonia, nitrogen dioxide and nitrate in the atmosphere. Atmos Environ 11:1239–1243

    Google Scholar 

  • Morin S, Savarino J, Bekki S et al (2007) Signature of Arctic surface ozone depletion events in the isotope anomaly (Δ17O) of atmospheric nitrate. Atmos Chem Phys. doi:10.5194/acp-7-1451-2007

    Article  Google Scholar 

  • Morin S, Savarino J, Frey MM et al (2008) Tracing the origin and fate of NOx in the Arctic atmosphere using stable isotopes in nitrate. Science. doi:10.1126/science.1161910

    Article  Google Scholar 

  • Morin S, Savarino J, Frey MM et al (2009) Comprehensive isotopic composition of atmospheric nitrate in the Atlantic Ocean boundary layer from 65° S to 79° N. J Geophys Res. doi:10.1029/2008jd010696

    Article  Google Scholar 

  • Mulvaney R, Wagenbach D, Wolff EW (1998) Postdepositional change in snowpack nitrate from observation of year-round near-surface snow in coastal Antarctica. J Geophys Res 103:11021–11031

    Google Scholar 

  • Murphey BF (1947) The temperature variation of the thermal diffusion factors for binary mixtures of hydrogen, deuterium, and helium. Phys Rev 72:834–837

    Google Scholar 

  • Neubauer J, Heumann KG (1988) Determination of nitrate at the ng/g level in Antarctic snow samples with ion chromatography and isotope-dilution mass-spectrometry. Fresenius Z Anal Chem. doi:10.1007/BF01105161

    Article  Google Scholar 

  • Nevins JL, Altabet MA, McCarthy JJ (1985) Nitrogen isotope ratio analysis of small samples – sample preparation and calibration. Anal Chem 57:2143–2145

    Google Scholar 

  • Nier AO (1936) A mass-spectrographic study of the isotopes of argon, potassium, rubidium, zinc and cadmium. Phys Rev 50:1041–1045

    Google Scholar 

  • Nier AO (1940) A mass spectrometer for routine isotope abundance measurements. Rev Sci Instrum 11:212–216

    Google Scholar 

  • Nier AO (1947) A mass spectrometer for isotope and gas analysis. Rev Sci Instrum 18:398–411

    Google Scholar 

  • Ogawa Y, Nishikawa M, Nakasugi O et al (2001) Determination of the abundance of delta N-15 in nitrate ion in contaminated groundwater samples using an elemental analyzer coupled to a mass spectrometer. Analyst 126:1051–1054

    Google Scholar 

  • Ono S, Wing B, Rumble D et al (2006) High precision analysis of all four stable isotopes of sulfur (S-32, S-33, S-34 and S-36) at nanomole levels using a laser fluorination isotope-ratio-monitoring gas chromatography-mass spectrometry. Chem Geol. doi:10.1016/j.chemgeo.2005.08.005

    Article  Google Scholar 

  • Owens NJP (1988) Rapid and total automation of shipboard N-15 analysis – examples from the North-Sea. J Exp Mar Biol Ecol 122:163–171

    Google Scholar 

  • Owens NJP, Rees AP (1989) Determination of N-15 at submicrogram levels of nitrogen using automated continuous-flow isotope ratio mass-spectrometry. Analyst 114:1655–1657

    Google Scholar 

  • Papineau D, Mojzsis SJ, Coath CD et al (2005) Multiple sulfur isotopes of sulfides from sediments in the aftermath of Paleoproterozoic glaciations. Geochim Cosmochim Acta. doi:10.1016/j.gca.2005.07.005

    Article  Google Scholar 

  • Papineau D, Mojzsis SJ, Schmitt AK (2007) Multiple sulfur isotopes from Paleoproterozoic Huronian interglacial sediments and the rise of atmospheric oxygen. Earth Planet Sci Lett. doi:10.1016/j.epsl.2006.12.015

    Article  Google Scholar 

  • Parwel A, Ryhage R, Wickman FE (1957) Natural variations in the relative abundances of the nitrogen isotopes. Geochim Cosmochim Acta 11:165–170

    Google Scholar 

  • Patris N, Delmas RJ, Jouzel J (2000) Isotopic signatures of sulfur in shallow Antarctic ice cores. J Geophys Res 105:7071–7078

    Google Scholar 

  • Patris N, Delmas RJ, Legrand M et al (2002) First sulfur isotope measurements in central Greenland ice cores along the preindustrial and industrial periods. J Geophys Res. doi:4115, 10.1029/2001jd000672

    Google Scholar 

  • Patris N, Cliff SS, Quinn PK et al (2007) Isotopic analysis of aerosol sulfate and nitrate during ITCT-2k2: determination of different formation pathways as a function of particle size. J Geophys Res. doi:23310.21029/22005JD006214

    Google Scholar 

  • Pavlov AA, Mills MJ, Toon OB (2005) Mystery of the volcanic mass-independent sulfur isotope fractionation signature in the Antarctic ice core. Geophys Res Lett 32. doi:10.1029/2005gl022784

    Google Scholar 

  • Pepkowitz LP, Shirley EL (1951) Microdetection of sulfur. Anal Chem 23:1709–1710

    Google Scholar 

  • Pichlmayer F, Blochberger K (1988) Isotopic abundance analysis of carbon, nitrogen and sulfur with a combined elemental analyzer-mass spectrometer system. Fresenius Z Anal Chem 331:196–201

    Google Scholar 

  • Pichlmayer F, Schoner W, Seibert P et al (1998) Stable isotope analysis for characterization of pollutants at high elevation alpine sites. Atmos Environ 32:4075–4085

    Google Scholar 

  • Poulson SR (2005) The effect of sulfate-delta O-18 upon on-line sulfate-delta S-34 analysis, and implications for measurements of delta S-33 and Delta S-33. Rapid Commun Mass Spectrom. doi:10.1002/rcm.1754

    Article  Google Scholar 

  • Preston T, Owens NJP (1983) Interfacing an automatic elemental analyzer with an isotope ratio mass-spectrometer – the potential for fully automated total nitrogen and N-15 analysis. Analyst 108:971–977

    Google Scholar 

  • Preunkert S, Jourdain B, Legrand M et al (2008) Seasonality of sulfur species (dimethyl sulfide, sulfate, and methanesulfonate) in Antarctica: inland versus coastal regions. J Geophys Res-Atmospheres. doi:10.1029/2008jd009937

    Article  Google Scholar 

  • Pruett LE, Kreutz KJ, Wadleigh M et al (2004) Sulfur isotopic measurements from a West Antarctic ice core: implications for sulfate source and transport. Ann Glaciol 39:161–168

    Google Scholar 

  • Rafter TA (1967) Oxygen isotopic composition of sulphates.I. A method for extraction of oxygen and its quantative conversion to carbon dioxide for isotope radiation measurements. N Z J Sci 10:493–510

    Google Scholar 

  • Rai VK, Jackson TL, Thiemens MH (2005) Photochemical mass-independent sulfur isotopes in achondritic meteorites. Science 309:1062–1065

    Google Scholar 

  • Rees CE (1978) Sulfur isotope measurements using SO2 and SF6. Geochim Cosmochim Acta 42:383–389

    Google Scholar 

  • Rees CE, Jenkins WJ, Monster J (1978) Sulfur isotopic composition of ocean water sulfate. Geochim Cosmochim Acta 42:377–381

    Google Scholar 

  • Revesz K, Böhlke JK, Yoshinari T (1997) Determination of delta O-18 and delta N-15 in nitrate. Anal Chem 69:4375–4380

    Google Scholar 

  • Richet P, Bottinga Y, Javoy M (1977) A review of hydrogen, carbon, nitrogen, oxygen, sulphur, and chlorine fractionation among gaseous molecules. Annu Rev Earth Planet Sci 5:65–110

    Google Scholar 

  • Rittenberg D, Ponticorvo L (1956) A method for the determination of the 18O is concentration of the oxygen of organic compounds. Int J Appl Radiat Isot 1:208–214

    Google Scholar 

  • Robinson BW, Kusakabe M (1975) Quantitative preparation of sulfur-dioxide, for S-34-S-32 analyses, from sulfides by combustion with cuprous-oxide. Anal Chem 47:1179–1181

    Google Scholar 

  • Robock A (2000) Volcanic eruptions and climate. Rev Geophys 38:191–219

    Google Scholar 

  • Röckmann T, Brenninkmeijer CAM, Saueressig G et al (1998) Mass-independent oxygen isotope fractionation in atmospheric CO as a result of the reaction CO + OH. Science 281:544–546

    Google Scholar 

  • Röthlisberger R, Hutterli MA, Wolff EW et al (2002) Nitrate in Greenland and Antarctic ice cores: a detailed description of post-depositional processes. Ann Glaciol 35:209–216

    Google Scholar 

  • Sander R, Rudich Y, von Glasow R et al (1999) The role of BrNO3 in marine tropospheric chemistry: a model study. Geophys Res Lett 26:2857–2860

    Google Scholar 

  • Sano M, Yotsui Y, Abe H et al (1976) New technique for detection of metabolites labeled by isotope C-13 using mass fragmentography. Biomed Mass Spectrom 3:1–3

    Google Scholar 

  • Savarino J, Thiemens MH (1999a) Analytical procedure to determine both δ18O and δ17O of H2O2 in natural water and first measurements. Atmos Environ 33:3683–3690

    Google Scholar 

  • Savarino J, Thiemens MH (1999b) Mass-independent oxygen isotope (16O, 17O, 18O) fractionation found in Hx, Ox reactions. J Phys Chem 103:9221–9229

    Google Scholar 

  • Savarino J, Lee CW, Thiemens MH (2000) Laboratory oxygen isotopic study of sulfur (IV) oxidation: origin of the mass independent oxygen isotopic anomaly in atmospheric sulfates and other sulfate mineral deposits. J Geophys Res 15:29079–29089

    Google Scholar 

  • Savarino J, Alexander B, Darmohusodo V et al (2001) Sulfur and oxygen isotope analysis of sulfate at micromole levels using a pyrolysis technique in a continuous flow system. Anal Chem. doi:10.1021/ac010017f

    Article  Google Scholar 

  • Savarino J, Romero A, Cole-Dai J et al (2003) UV induced mass-independent sulfur isotope fractionation in stratospheric volcanic sulfate. Geophys Res Lett. doi:10.1029/2003gl018134

    Article  Google Scholar 

  • Savarino J, Kaiser J, Morin S et al (2007) Nitrogen and oxygen isotopic constraints on the origin of atmospheric nitrate in coastal Antarctica. Atmos Chem Phys. doi:10.5194/acp-7-1925-2007

    Article  Google Scholar 

  • Savarino J, Bhattacharya SK, Morin S et al (2008) The NO + O3 reaction: a triple oxygen isotope perspective on the reaction dynamics and atmospheric implications for the transfer of the ozone isotope anomaly. J Chem Phys. doi:10.1063/1.2917581

    Article  Google Scholar 

  • Seinfeld JH, Pandis SN (1998) Atmospheric chemistry and physics, 1st edn. Wiley, New York

    Google Scholar 

  • Shindell DT, Faluvegi G, Unger N et al (2006) Simulations of preindustrial, present-day, and 2100 conditions in the NASA GISS composition and climate model G-PUCCINI. Atmos Chem Phys. doi:10.5194/acp-6-4427-2006

    Article  Google Scholar 

  • Sigman DM, Casciotti KL, Andreani M et al (2001) A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater. Anal Chem 73:4145–4153

    Google Scholar 

  • Silva JA, Bremner JM (1966) Determination and isotope-ratio analysis of different forms of nitrogen in soils.5. Fixed ammonium. Soil Sci Soc Am Proc 30:587–592

    Google Scholar 

  • Silva SR, Kendall C, Wilkison DH et al (2000) A new method for collection of nitrate from fresh water and the analysis of nitrogen and oxygen isotope ratios. J Hydrol 228:22–36

    Google Scholar 

  • Simpson WR, von Glasow R, Riedel K et al (2007) Halogens and their role in polar boundary-layer ozone depletion. Atmos Chem Phys. doi:10.5194/acp-7-4375-2007

    Article  Google Scholar 

  • Sowers T (2001) N2O record spanning the penultimate deglaciation from the Vostok ice core. J Geophys Res 106:31903–31914

    Google Scholar 

  • Sprinson DB, Rittenberg D (1949) The rate of utilization of ammonia for protein synthesis. J Biol Chem 180:707–714

    Google Scholar 

  • Thiemens MH (2006) History and applications of mass-independent isotope effects. Annu Rev Earth Planet Sci. doi:10.1146/annurev.earth.34.031405.125026

    Article  Google Scholar 

  • Thiemens MH, Heidenreich JE III (1983) The mass-independent fractionation of oxygen: a novel isotope effect and its possible cosmochemical implications. Science 219:1073–1075

    Google Scholar 

  • Thode HG, Monster J, Dunford HB (1961) Sulphur isotope geochemistry. Geochim Cosmochim Acta 25:159–174

    Google Scholar 

  • Thompson AM (1992) The oxidizing capacity of the Earth’s atmosphere – probable past and future changes. Science 256:1157–1165

    Google Scholar 

  • Thompson AM, Chappellaz JA, Fung IY et al (1993) The atmospheric CH4 increase since the last glacial maximum.2. Interactions with oxidants. Tellus 45B:242–257

    Google Scholar 

  • Udisti R, Becagli S, Benassai S et al (2004) Atmosphere-snow interaction by a comparison between aerosol and uppermost snow-layers composition at Dome C, East Antarctica. Ann Glaciol 39:53–61

    Google Scholar 

  • Ueda A, Krouse HR (1986) Direct conversion of sulfide and sulfate minerals to SO2 for isotope analyses. Geochem J 20:209–212

    Google Scholar 

  • Urey HC (1947) The thermodynamic properties of isotopic substances. J Chem Soc:562–581

    Google Scholar 

  • Valdes PJ, Beerling DJ, Johnson CE (2005) The ice age methane budget. Geophys Res Lett. doi: 02710.01029/02004GL021004

    Google Scholar 

  • Wadham JL, Hallam KR, Hawkins J et al (2006) Enhancement of snowpack inorganic nitrogen by aerosol debris. Tellus Series. doi:10.1111/j.1600-0889.2006.00180.x

    Google Scholar 

  • Wadleigh MA, Schwarcz HP, Kramer JR (1996) Isotopic evidence for the origin of sulphate in coastal rain. Tellus 48B:44–59

    Google Scholar 

  • Wadleigh MA, Schwarcz HP, Kramer JR (2001) A real distribution of sulphur and oxygen isotopes in sulphate of rain over eastern North America. J Geophys Res 106:20883–20895

    Google Scholar 

  • Wagenbach D, Legrand M, Fischer H et al (1998) Atmospheric near-surface nitrate at coastal Antarctic sites. J Geophys Res 103:11007–11020

    Google Scholar 

  • Wagnon P, Delmas RJ, Legrand M (1999) Loss of volatile acid species from the upper firn layers at Vostok, Antarctica. J Geophys Res 104:3423–3431

    Google Scholar 

  • Wang YH, Jacob DJ (1998) Anthropogenic forcing on tropospheric ozone and OH since preindustrial times. J Geophys Res 103:31123–31135

    Google Scholar 

  • Wassenaar LI (1995) Evaluation of the origin and fate of nitrate in the Abbotsford aquifer using the isotopes of N-15 and O-18 in NO3. Appl Chem 10:391–405

    Google Scholar 

  • Watanabe Y, Farquhar J, Ohmoto H (2009) Anomalous fractionations of sulfur isotopes during thermochemical sulfate reduction. Science. doi:10.1126/science.1169289

    Article  Google Scholar 

  • Werner RA, Bruch BA, Brand WA (1999) ConFlo III – an interface for high precision delta C-13 and delta N-15 analysis with an extended dynamic range. Rapid Commun Mass Spectrom 13:1237–1241

    Google Scholar 

  • Wolff E (1995) Nitrate in polar ice. In: Delmas R (ed) Ice core studies of global biogeochemical cycles, vol 30. Springer, New York

    Google Scholar 

  • Wynn PM, Hodson AJ, Heaton THE et al (2007) Nitrate production beneath a high Arctic glacier, Svalbard. Chem Geol. doi:10.1016/j.chemgeo.2007.06.008

    Article  Google Scholar 

  • Xue DM, De Baets B, Botte J et al (2010) Comparison of the silver nitrate and bacterial denitrification methods for the determination of nitrogen and oxygen isotope ratios of nitrate in surface water. Rapid Commun Mass Spectrom. doi:10.1002/rcm.4445

    Article  Google Scholar 

  • Yang L (2009) Accurate and precise determination of isotopic ratios by MC-ICP-MS: a review. Mass Spectrom Rev. doi:10.1002/mas.20251

    Article  Google Scholar 

  • Yeatman SG, Spokes LJ, Dennis PF et al (2001) Comparisons of aerosol nitrogen isotopic composition at two polluted coastal sites. Atmos Environ 35:1307–1320

    Google Scholar 

  • Young E, Galy A, Nagahara H (2002) Kinetic and equilibrium mass-dependent isotope fractionation laws in nature and their geochemical and cosmochemical significance. Geochim Cosmochim Acta 66:1095–1104

    Google Scholar 

  • Zielinski GA, Mayewski PA, Meeker LD et al (1994) Record of volcanism since 7000-BC from the GISP2 Greenland ice core and implications for the volcano-climate system. Science 264:948–952

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to Becky Alexander and Mark Thiemens for their exhaustive review which significantly improved the reading and the clarity of the manuscript. We also thank the Institut National des Sciences de l’Univers (CNRS/INSU) and the LEFE program for their continuous funding support. Equally, the strong support for the logistic operations in the difficult environment of Antarctica and through the funding program 1011 NITEDC of the Institut Polaire Paul Emile Victor (IPEV) is deeply acknowledged. JS acknowledges the support of the French Agence Nationale de la Recherche (ANR), under grants VOLSOL (NT09_431976) “Forçages climatiques naturels volcanique et solaire” and OPALE (NT09-451281) “Oxidant Production over Antarctica Land and its Export”. And last but not least, JS deeply wants to thank all undergraduates, PhD students and post-docs who spent countless hours to develop, measure and discuss data, always with enthusiasm and motivation. Some of the work presented here would not have been possible without their spirit.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joël Savarino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Savarino, J., Morin, S. (2012). The N, O, S Isotopes of Oxy-Anions in Ice Cores and Polar Environments. In: Baskaran, M. (eds) Handbook of Environmental Isotope Geochemistry. Advances in Isotope Geochemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10637-8_39

Download citation

Publish with us

Policies and ethics