Skip to main content

Maintaining Nets and Net Trees under Incremental Motion

  • Conference paper
Algorithms and Computation (ISAAC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5878))

Included in the following conference series:

Abstract

The problem of maintaining geometric structures for points in motion has been well studied over the years. Much theoretical work to date has been based on the assumption that point motion is continuous and predictable, but in practice, motion is typically presented incrementally in discrete time steps and may not be predictable. We consider the problem of maintaining a data structure for a set of points undergoing such incremental motion. We present a simple online model in which two agents cooperate to maintain the structure. One defines the data structure and provides a collection of certificates, which guarantee the structure’s correctness. The other checks that the motion over time satisfies these certificates and notifies the first agent of any violations.

We present efficient online algorithms for maintaining both nets and net trees for a point set undergoing incremental motion in a space of constant dimension. We analyze our algorithms’ efficiencies by bounding their competitive ratios relative to an optimal algorithm. We prove a constant factor competitive ratio for maintaining a slack form of nets, and our competitive ratio for net trees is proportional to the square of the tree’s height.

This work has been supported by the National Science Foundation under grant CCR-0635099 and the Office of Naval Research under grant N00014-08-1-1015.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, B., Pauly, M., Keiser, R., Guibas, L.J.: Adaptively sampled particle fluids. In: ACM SIGGRAPH, p. 48 (2007)

    Google Scholar 

  2. Chib, S., Greenberg, E.: Understanding the metropolis-hastings algorithm. The American Statistician 49, 327–335 (1995)

    Article  Google Scholar 

  3. Cho, M., Mount, D.M., Park, E.: Maintaining nets and net trees under incremental motion. Technical Report CS-TR-4941, UMIACS-TR-2009-10, University of Maryland, College Park (2009)

    Google Scholar 

  4. Cole, R., Gottlieb, L.-A.: Searching dynamic point sets in spaces with bounded doubling dimension. In: Proc. 38th Annu. ACM Sympos. Theory Comput., pp. 574–583 (2006)

    Google Scholar 

  5. Gao, J., Guibas, L.J., Nguyen, A.: Deformable spanners and applications. Comput. Geom. Theory Appl. 35, 2–19 (2006)

    MATH  MathSciNet  Google Scholar 

  6. Gottlieb, L.-A., Roditty, L.: An optimal dynamic spanner for doubling metric spaces. In: Halperin, D., Mehlhorn, K. (eds.) Esa 2008. LNCS, vol. 5193, pp. 478–489. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  7. Guibas, L.: Kinetic data structures. In: Mehta, D., Sahni, S. (eds.) Handbook of Data Structures and App., pp. 23–1–23–18. Chapman and Hall/CRC, Boca Raton (2004)

    Google Scholar 

  8. Har-Peled, S., Mendel, M.: Fast construction of nets in low dimensional metrics, and their applications. SIAM J. Comput. 35, 1148–1184 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Kahan, S.: A model for data in motion. Proc. 23rd Annu. ACM Sympos. Theory Comput., 265–277 (1991)

    Google Scholar 

  10. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  Google Scholar 

  11. Krauthgamer, R., Lee, J.R.: Navigating nets: Simple algorithms for proximity search. In: Proc. 15th Annu. ACM-SIAM Sympos. Discrete Algorithms, pp. 798–807 (2004)

    Google Scholar 

  12. Monaghan, J.J.: Smoothed particle hydrodynamics. Reports on Progress in Physics 68, 1703–1759 (2005)

    Article  MathSciNet  Google Scholar 

  13. Mount, D.M., Netanyahu, N.S., Piatko, C., Silverman, R., Wu, A.Y.: A computational framework for incremental motion. In: Proc. 20th Annu. ACM Sympos. Comput. Geom., pp. 200–209 (2004)

    Google Scholar 

  14. Yi, K., Zhang, Q.: Multi-dimensional online tracking. In: Proc. 20th Annu. ACM-SIAM Sympos. Discrete Algorithms, pp. 1098–1107 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cho, M., Mount, D.M., Park, E. (2009). Maintaining Nets and Net Trees under Incremental Motion. In: Dong, Y., Du, DZ., Ibarra, O. (eds) Algorithms and Computation. ISAAC 2009. Lecture Notes in Computer Science, vol 5878. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10631-6_114

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10631-6_114

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10630-9

  • Online ISBN: 978-3-642-10631-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics