Skip to main content

Polymer Stabilized Lipid Membranes: Langmuir Monolayers

  • Chapter
  • First Online:
Polymer Membranes/Biomembranes

Part of the book series: Advances in Polymer Science ((POLYMER,volume 224))

  • 1454 Accesses

Abstract

Polymer-tethered membranes combine fascinating structural, dynamic, and viscoelastic properties. Many important insights into these peculiar supramolecular systems can be obtained from studies on polymer-tethered monolayers. This chapter discusses recent experimental findings on polymer-tethered monolayers at the air–water interface. In particular, Langmuir monolayers which are comprised of pure lipopolymers and of binary phospholipid–lipopolymer mixtures are considered. Thermodynamic data as well as structural data based on a host of experimental techniques including X-ray and neutron reflectrometry, infrared reflection absorption spectroscopy, and sum frequency generation spectroscopy provide information on how lipopolymers organize at the air–water interface. This information is followed by a review of the viscoelastic properties of these systems, including the remarkable gelation transition that can be observed in lipopolymers and mixed phospholipid–lipopolymer monolayers. The diffusion properties are also discussed at length, and show that lipid diffusivity is critically dependent on the strength of inter-polymer interactions of lipopolymers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Interestingly enough, the storage modulus of diblock copolymers is weakened by increasing the mol fraction of one of the substituents of the diblock, unfunctionalized PEG chains [47]. This is similar to the current situation if a DSPE-PEG2000 lipopolymer is considered a short diblock copolymer and the mixed-in phospholipid is considered one of the substituents of the diblock.

References

  1. Baekmark TR, Elender G, Lasic DD, Sackmann E (1995) Conformational transitions of mixed monolayers of phospholipids and polyethylene oxide lipopolymers and interaction forces with solid surfaces. Langmuir 11:3975-3987 (correction) (1996) Langmuir 12:4980-4980

    Article  CAS  Google Scholar 

  2. Naumann CA, Brooks CF, Fuller GG, Knoll W, Frank CW (1999) Viscoelastic properties of lipopolymers at the air-water interface: a combined interfacial stress rheometer and film balance study. Langmuir 15:7752-7761

    Article  CAS  Google Scholar 

  3. Goncalves da Silva AM, Filipe EJM, d'Oliveira JMR, Martinho JMG (1996) Interfacial behavior of poly(styrene)-poly(ethylene oxide) diblock copolymer monolayers at the air-water interface. hydrophilic block chain length and temperature influence. Langmuir 12:6547-6553

    Article  CAS  Google Scholar 

  4. Kim MW, Cao BH (1993) Additional reduction of surface tension of aqueous polyethylene oxide (PEO) solution at high polymer concentration. Europhys Lett 24:229

    Article  CAS  Google Scholar 

  5. Cao BH, Kim MW (1995) Molecular weight dependence of the surface tension of aqueous poly(ethylene oxide) solutions. Faraday Discuss 98:245-252

    Article  Google Scholar 

  6. Baekmark TR, Wiesenthal T, Kuhn P, Albersdorfer A, Nuyken O, Merkel R (1999) A systematic infrared reflection-absorption spectroscopy and film balance study of the phase behavior of lipopolymer monolayers at the air-water interface. Langmuir 15:3616-3626

    Article  CAS  Google Scholar 

  7. Foreman MB, Coffman JP, Murcia MJ, Cesana S, Jordan R, Smith GS, Naumann CA (2003) Gelation of amphiphilic lipopolymers at the air-water interface: 2D analogue to 3D gelation of colloidal systems with grafted polymer chains. Langmuir 19:326-332

    Article  CAS  Google Scholar 

  8. Luedtke K, Jordan R, Hommes P, Nuyken O, Naumann CA (2005) Lipopolymers from new 2-substituted-2-oxazolines for artificial cell membrane constructs. Macromol Biosci 5:384-393

    Article  CAS  Google Scholar 

  9. Barentin C, Muller P, Joanny JF (1998) Polymer brushes formed by end-capped poly(ethylene oxide) (PEO) at the air-water interface. Macromolecules 31:2198-2211

    Article  CAS  Google Scholar 

  10. Wiesenthal T, Baekmark TR, Merkel R (1999) Direct evidence for a lipid alkyl chain orderng transition in poly(ethylene oxide) lipopolymer monolayers at the air-water interface obtained from infrared reflection absorption spectroscopy. Langmuir 15:6837-6844

    Article  CAS  Google Scholar 

  11. Coffman JP, Naumann CA (2002) Molecular weight dependence of viscoelastic properties in two-dimensional physical polymer networks: amphiphilic lipopolymer monolayers at the air-water interface. Macromolecules 35:1835-1839

    Article  CAS  Google Scholar 

  12. Naumann CA, Brooks CF, Fuller GG, Lehmann T, Ruehe J, Knoll W, Kuhn P, Nuyken O, Frank CW (2001) Two-dimensional physical networks of lipopolymers at the air/water interface: correlation of molecular structure and surface rheological behavior. Langmuir 17:2801-2806

    Article  CAS  Google Scholar 

  13. Wurlitzer A, Politsch E, Huebner S, Krueger P, Weygand M, Kjaer K, Hommes P, Nuyken O, Cevc G, Loesche M (2001) Conformation of polymer brushes at aqueous surfaces determined with X-ray and neutron reflectometry. 2. High-density phase transition of lipopolyoxazolines. Macromolecules 34:1334-1342

    Article  CAS  Google Scholar 

  14. Krueger P, Loesche M (2004) Characterization of floating surface layers of lipids and lipopolymers by surface-sensitive scattering. In: Haberlandt R, Michel D, Poppl A, Stannarius (eds) Molecules in interaction with surfaces and interfaces. Lecture Notes in Physics, vol. 634. Springer, Berlin Heidelberg New York, pp 395-438

    Google Scholar 

  15. Ahrens H, Baekmark TR, Merkel R, Schmitt J, Graf K, Raiteri R, Helm CA (2000) Hydrophilic/hydrophobic nanostripes in lipopolymer monolayers. ChemPhysChem 1:101-106

    Article  CAS  Google Scholar 

  16. Ahrens H, Graf K, Helm CA (2001) Observation of a superstructure X-ray peak within lipopolymer monolayers on the water surface. Langmuir 17:3113-3115

    Article  CAS  Google Scholar 

  17. Kuhl TL, Majewski J, Howes PB, Kjaier K, von Nahmen A, Lee KYC, Ocko B, Israelachvili JN, Smith GS (1999) Packing stress relaxation in polymer-lipid monolayers at the air-water interface: an X-ray grazing-incidence diffraction and reflectivity study. J Am Chem Soc 121:7682-7688

    Article  CAS  Google Scholar 

  18. Israelachvili J (1994) Self-assembly in two dimensions: surface micelles and domain formation in monolayers. Langmuir 10:3774-3781

    Article  CAS  Google Scholar 

  19. Dewhurst PF, Lovell MR, Jones JL, Richards RW, Webster JRP (1998) Organization of dispersions of a linear diblock copolymer of polystyrene and poly(ethylene oxide) at the air-water interface. Macromolecules 31:7851-7864

    Article  CAS  Google Scholar 

  20. Deschenes L, Bousmina M, Ritcey AM (2008) Micellization of PEO/PS block copolymers at the air/water interface: a simple model for predicting the size and aggregation number of circular surface micelles. Langmuir 24:3699-3708

    Article  CAS  Google Scholar 

  21. Brooks CF, Fuller GG, Frank CW, Roberston CR (1999) An interfacial stress rheometer to study rheological transitions in monolayers at the air-water interface. Langmuir 15:2450-2459

    Article  CAS  Google Scholar 

  22. Schneider MF, Lim K, Fuller GG, Tanaka M (2002) Rheology of glycocalix model at air/water interface. Phys Chem Chem Phys 4:1949-1952

    Article  CAS  Google Scholar 

  23. Witten TA, Pincus PA (1986) Colloid stabilization by long grafted polymers. Macromolecules 19:2509-2513

    Article  CAS  Google Scholar 

  24. Lin EK, Gast AP (1996) Self consistent field calculations of interactions between chains tethered to spherical interfaces. Macromolecules 29:390-397

    Article  CAS  Google Scholar 

  25. Lee AS, Butun V, Vamvakaki M, Armes SP, Pople JA, Gast AP (2002) Structure of pH-dependent block copolymer micelles: charge and ionic strength dependence. Macromolecules 35:8540-8551

    Article  CAS  Google Scholar 

  26. Loppinet B, Stiakakis E, Vlassopoulos D, Fytas G, Roovers J (2001) Reversible thermal gelation in star polymers: an alternative route to jamming of soft matter. Macromolecules 34:8216-8223

    Article  CAS  Google Scholar 

  27. Stiakakis E, Vlassopoulos D, Loppinet B, Roovers J, Meier G (2002) Kinetic arrest of crowded soft spheres in solvents of varying quality. Phys Rev E 66:051804

    Article  CAS  Google Scholar 

  28. Kapnistos M, Vlassopoulos D, Fytas G, Mortensen K, Fleischer G, Roovers J (2000) Reversible thermal gelation in soft spheres. Phys Rev Lett 85:2072-2075

    Article  Google Scholar 

  29. Renou F, Benyahia L, Nicolai T (2007) Influence of adding unfunctionalized peo on the viscoelasticity and the structure of dense polymeric micelle solutions formed by hydrophobically end-capped PEO. Macromolecules 40:4626-4634

    Article  CAS  Google Scholar 

  30. Murcia MJ, Garg S, Naumann CA (2007) Single molecule fluorescence microscopy to determine phospholipid lateral diffusion. In: Dopico A (ed) Methods in membrane lipids. Humana, Totowa, pp 277-294

    Chapter  Google Scholar 

  31. Luedtke K, Jordan R, Furr N, Garg S, Forsythe K, Naumann CA (2008) Two-dimensional center-of-mass diffusion of lipid-tethered poly(2-methyl-2-oxazoline) at the air-water interface studied at the single molecule level. Langmuir 24:5580-5584

    Article  CAS  Google Scholar 

  32. Leger L, Hervet H, Rondelez F (1981) Reptation in entangled polymer solutions by forced Rayleigh light scattering. Macromolecules 14:1732-1738

    Article  CAS  Google Scholar 

  33. Lee JCM, Santore M, Bates FS, Discher DE (2002) From membranes to melts, rouse to reptation: diffusion in polymersome versus lipid bilayers. Macromolecules 35:323-326

    Article  CAS  Google Scholar 

  34. Dalvi MC, Lodge TP (1994) Diffusion in block copolymer melts: the disordered region and the vicinity of the order-disorder transition. Macromolecules 27:3487-3492

    Article  CAS  Google Scholar 

  35. Ehlich D, Takenaka M, Hashimoto T (1993) Forced Rayleigh scattering study of diffusion of block copolymers. 2. Self-diffusion of block copolymer chains in lamellar microdomains and disordered melts. Macromolecules 26:492-498

    Article  CAS  Google Scholar 

  36. Lodge TP, Dalvi MC (1995) Mechanisms of chain diffusion in lamellar block copolymers. Phys Rev Lett 75:657-660

    Article  CAS  Google Scholar 

  37. Hammersky MW, Hillmeyer MA, Tirell M, Bates FS, Lodge TP, von Meerwall ED (1998) Block copolymer self-diffusion in the gyroid and cylinder morphologies. Macromolecules 31:5363-5370

    Article  Google Scholar 

  38. Almeida PFF, Vaz WLC (1995) Lateral diffusion in membranes. In: Lipowsky R, Sackmann E (eds) Handbook of biological physics, structure and dynamics of membranes, vol. 1A. Elsevier, Amsterdam

    Google Scholar 

  39. Ke PC, Naumann CA (2001) Hindered diffusion in polymer-tethered phospholipid monolayers at the air-water interface: a single molecule fluorescence imaging study. Langmuir 17:5076-5081

    Article  CAS  Google Scholar 

  40. Deverall MA, Gindl E, Sinner E-K, Besir H, Ruehe J, Saxton MJ, Naumann CA (2005) Membrane lateral mobility obstructed by polymer-tethered lipids studied at the single molecule level. Biophys J 88:1875-1886

    Article  CAS  Google Scholar 

  41. Duncan SL, Larson RG (2008) Comparing experimental and simulated pressure-area isotherms for DPPC. Biophys J 94:2965-2986

    Article  CAS  Google Scholar 

  42. Naumann CA, Brooks CF, Wiyatno W, Knoll W, Fuller GG, Frank CW (2001) Rheological properties of lipopolymer-phospholipid mixtures at the air-water interface: a novel form of two-dimensional physical gelation. Macromolecules 34:3024-3032

    Article  CAS  Google Scholar 

  43. Vaz WLC, Melo ECC, Thompson TE (1989) Translational diffusion and fluid domain connectivity in a two-component, two-phase phospholipid bilayer. Biophys J 56:869-876

    Article  CAS  Google Scholar 

  44. Leidy C, Wolkers WF, Jorgensen K, Mouritsen OG, Crowe JH (2001) Lateral organization and domain formation in a two-component lipid membrane system. Biophys J 80:1819-1828

    Article  CAS  Google Scholar 

  45. Xu Z, Holland NB, Marchant RE (2001) Conformations of short-chain poly(ethylene oxide) lipopolymers at the air-water interface: a combined film balance and surface tension study. Langmuir 17:377-383

    Article  CAS  Google Scholar 

  46. Chou TH, Chu I-M (2003) Thermodynamic characteristics of DSPC/DSPE-PEG2000 mixed monolayers on the water subphase at different temperatures. Coll Surf B Biointerf 27:333-344

    Article  CAS  Google Scholar 

  47. Majewski J, Kuhl TL, Gerstenberg MC, Israelachvili JN, Smith GS (1997) Structure of phospholipid monolayers containing Poly(ethylene glycol) lipids at the air-water interface. J Phys Chem B 101:3122-3129

    Article  CAS  Google Scholar 

  48. Gutberlet T, Wurlitzer A, Dietrich A, Politsch E, Cevc G, Steitz R, Losche M (2000) Organization of tethered polyoxazoline polymer brushes at the air/water interface. Phys B Condens Matter 283:37-39

    Article  CAS  Google Scholar 

  49. Ohe C, Goto Y, Noi M, Arai M, Kamijo H, Itoh K (2007) Sum frequency generation spectroscopic studies on phase transitions of phospholipid monolayers containing poly(ethylene oxide) lipids at the air-water interface. J Phys Chem B 111:1693-1700

    Article  CAS  Google Scholar 

  50. Ke PC, Naumann CA (2001) Single molecule fluorescence imaging of phospholipid monolayers at the air-water interface. Langmuir 17:3727-3733

    Article  CAS  Google Scholar 

  51. Naumann CA, Knoll W, Frank CW (2001) Hindered diffusion in polymer-tethered membranes: a monolayer study at the air-water interface. Biomacromol 2:1097-1103

    Article  CAS  Google Scholar 

  52. De Gennes PG (1987) Polymers at an interface: a simplified view. Adv Colloid Interf Sci 27:189-209

    Article  CAS  Google Scholar 

  53. Deverall MA, Garg S, Lüdtke K, Jordan R, Rühe J, Naumann CA (2008) Transbilayer coupling of obstructed lipid diffusion in polymer-tethered phospholipid bilayers. Soft Matter 4:1899–1908

    Article  CAS  Google Scholar 

  54. Alexander S (1977) Adsorption of chain molecules with a polar head a scaling description. J Phys 38:983-987

    CAS  Google Scholar 

  55. de Gennes, PG (1971) Reptation of a Polymer Chain in the presence of Fixed Obstacles. J Chem Phys 55:572–579

    Article  Google Scholar 

  56. Auguste DT, Kirkwood J, Kohn J, Fuller GG, Prud’homme RK (2008) Surface Rheology of Hydrophobically modified PEG polymers associating with a Phospholipid monolayer at the air-water interface. Langmuir 24:4056–4064

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by grants from the Petroleum Research Fund and the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. A. Naumann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Siegel, A.P., Naumann, C.A. (2009). Polymer Stabilized Lipid Membranes: Langmuir Monolayers. In: Meier, W., Knoll, W. (eds) Polymer Membranes/Biomembranes. Advances in Polymer Science, vol 224. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10479-4_11

Download citation

Publish with us

Policies and ethics