Skip to main content

Comparative Genomics and Extensive Recombinations in Phage Communities

  • Conference paper
  • 439 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 5817))

Abstract

Comparing the genomes of two closely related viruses often produces mosaics where nearly identical sequences alternate with sequences that are unique to each genome. When several closely related genomes are compared, the unique sequences are likely to be shared with third genomes, leading to virus mosaic communities. Here we present comparative analysis of sets of Staphylococcus aureus phages that share large identical sequences with up to three other genomes, and with different partners along their genomes. We introduce mosaic graphs to represent these complex recombination events, and use them to illustrate the breath and depth of sequence sharing: some genomes are almost completely made up of shared sequences, while genomes that share very large identical sequences can adopt alternate functional modules. Mosaic graphs also allow us to identify breakpoints that could eventually be used for the construction of recombination networks. These findings have several implications on phage metagenomics assembly, on the horizontal gene transfer paradigm, and more generally on the understanding of the composition and evolutionary dynamics of virus communities.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Highton, P.J., Chang, Y., Myers, R.J.: Evidence for the exchange of segments between genomes during the evolution of lambdoid bacteriophages. Mol. Microbiol. 4, 1329–1340 (1990)

    Article  CAS  PubMed  Google Scholar 

  2. Hatfull, G.F.: Bacteriophage genomics. Curr. Opin. Microbiol. 11, 447–453 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kwan, T., Liu, J., DuBow, M., Gros, P., Pelletier, J.: The complete genomes and proteomes of 27 Staphylococcus aureus bacteriophages. Proc. Natl. Acad. Sci. USA 102, 5174–5179 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hatfull, G.F., Cresawn, S.G., Hendrix, R.W.: Comparative genomics of the mycobacteriophages: insights into bacteriophage evolution. Res. Microbiol. 159, 332–339 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Breitbart, M., Miyake, J.H., Rohwer, F.: Global distribution of nearly identical phage-encoded DNA sequences. FEMS Microbiol. Lett. 236, 249–256 (2004)

    Article  CAS  PubMed  Google Scholar 

  6. Short, C.M., Suttle, C.A.: Nearly identical bacteriophage structural gene sequences are widely distributed in both marine and freshwater environments. Appl. Environ. Microbiol. 71, 480–486 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bryan, M.J., Burroughs, N.J., Spence, E.M., Clokie, M.R., Mann, N.H., et al.: Evidence for the intense exchange of MazG in marine cyanophages by horizontal gene transfer. PLoS ONE 3, e2048 (2008)

    Article  Google Scholar 

  8. Rohwer, F., Edwards, R.: The Phage Proteomic Tree: a genome-based taxonomy for phage. J. Bacteriol. 184, 4529–4535 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hatfull, G.F., Pedulla, M.L., Jacobs-Sera, D., Cichon, P.M., Foley, A., et al.: Exploring the mycobacteriophage metaproteome: phage genomics as an educational platform. PLoS Genet. 2, e92 (2006)

    Article  Google Scholar 

  10. Glazko, G., Makarenkov, V., Liu, J., Mushegian, A.: Evolutionary history of bacteriophages with double-stranded DNA genomes. Biol. Direct 2, 36 (2007)

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lima-Mendez, G., Van Helden, J., Toussaint, A., Leplae, R.: Reticulate representation of evolutionary and functional relationships between phage genomes. Mol. Biol. Evol. 25, 762–777 (2008)

    Article  CAS  PubMed  Google Scholar 

  12. Gusfield, D., Bansal, V.: A fundamental decomposition theory for phylogenetic networks and incompatible characters. In: Miyano, S., Mesirov, J., Kasif, S., Istrail, S., Pevzner, P.A., Waterman, M. (eds.) RECOMB 2005. LNCS (LNBI), vol. 3500, pp. 217–232. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  13. Huson, D.H., Bryant, D.: Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 23, 254–267 (2006)

    Article  CAS  PubMed  Google Scholar 

  14. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990)

    Article  CAS  PubMed  Google Scholar 

  15. Nesbo, C.L., Dlutek, M., Ford Dolittle, W.: Recombination in Thermotoga: Implications for Species Concepts and Biogeography. Genetics 172, 759–769 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kurtz, S., Choudhuri, J., Ohlebusch, E., Schleiermacher, C., Stoye, J., et al.: REPuter: The Manifold Applications of Repeat Analysis on a Genomic Scale. Nucleic Acids Res. 29, 4633–4642 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Margulies, M., Egholm, M., Altman, W.E., Attiya, S., Bader, J.S., et al.: Genome sequencing in microfabricated high-density picolitre reactors. Nature 437, 376–380 (2005)

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Bentley, D.R.: Whole-genome re-sequencing. Curr. Opin. Genet. Dev. 16, 545–552 (2006)

    Article  CAS  PubMed  Google Scholar 

  19. Martinsohn, J.T., Radman, M., Petit, M.A.: The lambda red proteins promote efficient recombination between diverged sequences: implications for bacteriophage genome mosaicism. PLoS Genet. 4, e1000065 (2008)

    Article  Google Scholar 

  20. Hendrix, R.W.: Bacteriophages: evolution of the majority. Theor. Popul. Biol. 61, 471–480 (2002)

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Poisson, G., Belcaid, M., Bergeron, A. (2009). Comparative Genomics and Extensive Recombinations in Phage Communities. In: Ciccarelli, F.D., Miklós, I. (eds) Comparative Genomics. RECOMB-CG 2009. Lecture Notes in Computer Science(), vol 5817. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04744-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04744-2_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04743-5

  • Online ISBN: 978-3-642-04744-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics