Skip to main content

Photophysics and Spectroscopy of Fluorophores in the Green Fluorescent Protein Family

  • Chapter
  • First Online:
Advanced Fluorescence Reporters in Chemistry and Biology I

Part of the book series: Springer Series on Fluorescence ((SS FLUOR,volume 8))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shimomura O, Johnson FH, Saiga Y (1962) Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J Cell Comp Physiol 59:223–239

    Article  CAS  Google Scholar 

  2. Shimomura O (2005) The discovery of aequorin and green fluorescent protein. J Microsc-Oxf 217:3–15

    Article  CAS  Google Scholar 

  3. Morise H, Shimomura O, Johnson FH, Winant J (1974) Intermolecular energy-transfer in bioluminescent system of Aequorea. Biochemistry 13:2656–2662

    Article  CAS  Google Scholar 

  4. Prendergast FG, Mann KG (1978) Chemical and physical properties of aequorin and the green fluorescent protein isolated from Aequorea forskalea. Biochemistry 17:3448–3453

    Article  CAS  Google Scholar 

  5. Ward WW, Cormier MJ (1979) An energy transfer protein in coelenterate bioluminescence. Characterization of the Renilla green-fluorescent protein. J Biol Chem 254:781–788

    CAS  Google Scholar 

  6. Ward WW (2006) Biochemical and physical properties of green fluorescent protein. Meth Biochem Anal 47:39–65

    Google Scholar 

  7. Prasher DC, Eckenrode VK, Ward WW, Prendergast FG, Cormier MJ (1992) Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111:229–233

    Article  CAS  Google Scholar 

  8. Inouye S, Tsuji FI (1994) Aequorea green fluorescent protein. Expression of the gene and fluorescence characteristics of the recombinant protein. FEBS Lett 341:277–280

    Article  CAS  Google Scholar 

  9. Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Green fluorescent protein as a marker for gene expression. Science 263:802–805

    Article  CAS  Google Scholar 

  10. Heim R, Prasher DC, Tsien RY (1994) Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proc Natl Acad Sci USA 91:12501–12504

    Article  CAS  Google Scholar 

  11. Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67:509–544

    Article  CAS  Google Scholar 

  12. Shaner NC, Patterson GH, Davidson MW (2007) Advances in fluorescent protein technology. J Cell Sci 120:4247–4260

    Article  CAS  Google Scholar 

  13. Wolff M, Kredel S, Wiedenmann J, Nienhaus GU, Heilker R (2008) Cell-based assays in practice: cell markers from autofluorescent proteins of the GFP-family. Comb Chem High Throughput Screen 11:602–609

    Article  CAS  Google Scholar 

  14. Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–1645

    Article  CAS  Google Scholar 

  15. Shagin DA, Barsova EV, Yanushevich YG, Fradkov AF, Lukyanov KA, Labas YA, Semenova TN, Ugalde JA, Meyers A, Nunez JM, Widder EA, Lukyanov SA, Matz MV (2004) GFP-like proteins as ubiquitous metazoan superfamily: Evolution of functional features and structural complexity. Mol Biol Evol 21:841–850

    Article  CAS  Google Scholar 

  16. Dove SG, Hoegh-Guldberg O, Ranganathan S (2001) Major colour patterns of reef-building corals are due to a family of GFP-like proteins. Coral Reefs 19:197–204

    Article  Google Scholar 

  17. Salih A, Larkum A, Cox G, Kuhl M, Hoegh-Guldberg O (2000) Fluorescent pigments in corals are photoprotective. Nature 408:850–853

    Article  CAS  Google Scholar 

  18. Palmer CV, Modi CK, Mydlarz LD (2009) Coral fluorescent proteins as antioxidants. PLoS ONE 4:e7298. doi:7210.1371/journal.pone.0007298

    Article  CAS  Google Scholar 

  19. Matz MV, Marshall NJ, Vorobyev M (2006) Symposium-in-print: green fluorescent protein and homologs. Photochem Photobiol 82:345–350

    Article  CAS  Google Scholar 

  20. Bogdanov AM, Mishin AS, Yampolsky IV, Belousov VV, Chudakov DM, Subach FV, Verkhusha VV, Lukyanov S, Lukyanov KA (2009) Green fluorescent proteins are light-induced electron donors. Nat Chem Biol 5:459–461

    Article  CAS  Google Scholar 

  21. Cody CW, Prasher DC, Westler WM, Prendergast FG, Ward WW (1993) Chemical structure of the hexapeptide chromophore of the Aequorea green-fluorescent protein. Biochemistry 32:1212–1218

    Article  CAS  Google Scholar 

  22. McNamara G, Boswell C (2007) A thousand proteins of light: 15 years of advances in fluorescent proteins. In: Méndez-Vilas A, Díaz J (eds) Modern research and educational topics in microscopy. Formatex, Badajoz, Spain, pp 287–296

    Google Scholar 

  23. Shimomura O (1979) Structure of the chromophore of Aequorea green fluorescent protein. FEBS Lett 104:220–222

    Article  CAS  Google Scholar 

  24. Niwa H, Inouye S, Hirano T, Matsuno T, Kojima S, Kubota M, Ohashi M, Tsuji FI (1996) Chemical nature of the light emitter of the Aequorea green fluorescent protein. Proc Natl Acad Sci USA 93:13617–13622

    Article  CAS  Google Scholar 

  25. Ormo M, Cubitt AB, Kallio K, Gross LA, Tsien RY, Remington SJ (1996) Crystal structure of the Aequorea victoria green fluorescent protein. Science 273:1392–1395

    Article  CAS  Google Scholar 

  26. Yang F, Moss LG, Phillips GN Jr (1996) The molecular structure of green fluorescent protein. Nat Biotechnol 14:1246–1251

    Article  CAS  Google Scholar 

  27. Kahn TW, Beachy RN, Falk MM (1997) Cell-free expression of a GFP fusion protein allows quantitation in vitro and in vivo. Curr Biol 7:R207–R208

    Article  CAS  Google Scholar 

  28. Heim R, Cubitt AB, Tsien RY (1995) Improved green fluorescence. Nature 373:663–664

    Article  CAS  Google Scholar 

  29. Patterson GH, Lippincott-Schwartz J (2002) A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297:1873–1877

    Article  CAS  Google Scholar 

  30. Matz MV, Fradkov AF, Labas YA, Savitsky AP, Zaraisky AG, Markelov ML, Lukyanov SA (1999) Fluorescent proteins from nonbioluminescent Anthozoa species. Nat Biotechnol 17:969–973

    Article  CAS  Google Scholar 

  31. Baird GS, Zacharias DA, Tsien RY (2000) Biochemistry, mutagenesis, and oligomerization of DsRed, a red fluorescent protein from coral. Proc Natl Acad Sci USA 97:11984–11989

    Article  CAS  Google Scholar 

  32. Lukyanov KA, Fradkov AF, Gurskaya NG, Matz MV, Labas YA, Savitsky AP, Markelov ML, Zaraisky AG, Zhao XN, Fang Y, Tan WY, Lukyanov SA (2000) Natural animal coloration can be determined by a nonfluorescent green fluorescent protein homolog. J Biol Chem 275:25879–25882

    Article  CAS  Google Scholar 

  33. Gross LA, Baird GS, Hoffman RC, Baldridge KK, Tsien RY (2000) The structure of the chromophore within DsRed, a red fluorescent protein from coral. Proc Natl Acad Sci USA 97:11990–11995

    Article  CAS  Google Scholar 

  34. Yarbrough D, Wachter RM, Kallio K, Matz MV, Remington SJ (2001) Refined crystal structure of DsRed, a red fluorescent protein from coral, at 2.0-A resolution. Proc Natl Acad Sci USA 98:462–467

    Article  CAS  Google Scholar 

  35. Wall MA, Socolich M, Ranganathan R (2000) The structural basis for red fluorescence in the tetrameric GFP homolog DsRed. Nat Struct Biol 7:1133–1138

    Article  CAS  Google Scholar 

  36. Wang L, Jackson WC, Steinbach PA, Tsien RY (2004) Evolution of new nonantibody proteins via iterative somatic hypermutation. Proc Natl Acad Sci USA 101:16745–16749

    Article  CAS  Google Scholar 

  37. Shu X, Shaner NC, Yarbrough CA, Tsien RY, Remington SJ (2006) Novel chromophores and buried charges control color in mFruits. Biochemistry 45:9639–9647

    Article  CAS  Google Scholar 

  38. Shkrob MA, Mishin AS, Chudakov DM, Labas YA, Lukyanov KA (2008) Chromoproteins of the green fluorescent protein family: Properties and applications. Russ J Bioorg Chem 34:517–525

    Article  CAS  Google Scholar 

  39. Gurskaya NG, Fradkov AF, Terskikh A, Matz MV, Labas YA, Martynov VI, Yanushevich YG, Lukyanov KA, Lukyanov SA (2001) GFP-like chromoproteins as a source of far-red fluorescent proteins. FEBS Lett 507:16–20

    Article  CAS  Google Scholar 

  40. Gurskaya NG, Fradkov AF, Pounkova NI, Staroverov DB, Bulina ME, Yanushevich YG, Labas YA, Lukyanov S, Lukyanov KA (2003) A colourless green fluorescent protein homologue from the non-fluorescent hydromedusa Aequorea coerulescens and its fluorescent mutants. Biochem J 373:403–408

    Article  CAS  Google Scholar 

  41. Kremers GJ, Hazelwood KL, Murphy CS, Davidson MW, Piston DW (2009) Photoconversion in orange and red fluorescent proteins. Nat Meth 6:355–360

    Article  CAS  Google Scholar 

  42. Elowitz MB, Surette MG, Wolf PE, Stock J, Leibler S (1997) Photoactivation turns green fluorescent protein red. Curr Biol 7:809–812

    Article  CAS  Google Scholar 

  43. Nienhaus K, Nienhaus GU, Wiedenmann J, Nar H (2005) Structural basis for photo-induced protein cleavage and green-to-red conversion of fluorescent protein EosFP. Proc Natl Acad Sci USA 102:9156–9159

    Article  CAS  Google Scholar 

  44. Mishin AS, Subach FV, Yampolsky IV, King W, Lukyanov KA, Verkhusha VV (2008) The first mutant of the Aequorea victoria green fluorescent protein that forms a red chromophore. Biochemistry 47:4666–4673

    Article  CAS  Google Scholar 

  45. Battad JM, Wilmann PG, Olsen S, Byres E, Smith SC, Dove SG, Turcic KN, Devenish RJ, Rossjohn J, Prescott M (2007) A structural basis for the pH-dependent increase in fluorescence efficiency of chromoproteins. J Mol Biol 368:998–1010

    Article  CAS  Google Scholar 

  46. Lukyanov KA, Chudakov DM, Lukyanov S, Verkhusha VV (2005) Innovation: photoactivatable fluorescent proteins. Nat Rev Mol Cell Biol 6:885–891

    Article  CAS  Google Scholar 

  47. Bulina ME, Chudakov DM, Mudrik NN, Lukyanov KA (2002) Interconversion of Anthozoa GFP-like fluorescent and non-fluorescent proteins by mutagenesis. BMC Biochem 3:7. doi:10.1186/1471-2091-1183-1187

    Article  Google Scholar 

  48. Prescott M, Ling M, Beddoe T, Oakley AJ, Dove S, Hoegh-Guldberg O, Devenish RJ, Rossjohn J (2003) The 2.2 A crystal structure of a pocilloporin pigment reveals a nonplanar chromophore conformation. Structure 11:275–284

    Article  CAS  Google Scholar 

  49. Pakhomov AA, Martynov VI (2008) GFP family: structural insights into spectral tuning. Chem Biol 15:755–764

    Article  CAS  Google Scholar 

  50. Chalfie M (2009) GFP: lighting up life (Nobel lecture). Angew Chem Int Ed Engl 48:5603–5611

    Article  CAS  Google Scholar 

  51. Shimomura O (2009) Discovery of green fluorescent protein (GFP) (Nobel lecture). Angew Chem Int Ed Engl 48:5590–5602

    Article  CAS  Google Scholar 

  52. Tsien RY (2009) Constructing and exploiting the fluorescent protein paintbox (Nobel lecture). Angew Chem Int Ed Engl 48:5612–5626

    Article  CAS  Google Scholar 

  53. Bizzarri R, Serresi M, Luin S, Beltram F (2009) Green fluorescent protein based pH indicators for in vivo use: a review. Anal Bioanal Chem 393:1107–1122

    Article  CAS  Google Scholar 

  54. Nienhaus GU, Wiedenmann J (2009) Structure, dynamics and optical properties of fluorescent proteins: perspectives for marker development. Chemphyschem 10:1369–1379

    Article  CAS  Google Scholar 

  55. Tonge PJ, Meech SR (2009) Excited state dynamics in the green fluorescent protein. J Photochem Photobiol A-Chem 205:1–11

    Article  CAS  Google Scholar 

  56. Cubitt AB, Heim R, Adams SR, Boyd AE, Gross LA, Tsien RY (1995) Understanding, improving and using green fluorescent proteins. Trends Biochem Sci 20:448–455

    Article  CAS  Google Scholar 

  57. Wachter RM (2007) Chromogenic cross-link formation in green fluorescent protein. Acc Chem Res 40:120–127

    Article  CAS  Google Scholar 

  58. Barondeau DP, Kassmann CJ, Tainer JA, Getzoff ED (2007) The case of the missing ring: radical cleavage of a carbon-carbon bond and implications for GFP chromophore biosynthesis. J Am Chem Soc 129:3118–3126

    Article  CAS  Google Scholar 

  59. Barondeau DP, Putnam CD, Kassmann CJ, Tainer JA, Getzoff ED (2003) Mechanism and energetics of green fluorescent protein chromophore synthesis revealed by trapped intermediate structures. Proc Natl Acad Sci USA 100:12111–12116

    Article  CAS  Google Scholar 

  60. Wood TI, Barondeau DP, Hitomi C, Kassmann CJ, Tainer JA, Getzoff ED (2005) Defining the role of arginine 96 in green fluorescent protein fluorophore biosynthesis. Biochemistry 44:16211–16220

    Article  CAS  Google Scholar 

  61. Rosenow MA, Huffman HA, Phail ME, Wachter RM (2004) The crystal structure of the Y66L variant of green fluorescent protein supports a cyclization-oxidation-dehydration mechanism for chromophore maturation. Biochemistry 43:4464–4472

    Article  CAS  Google Scholar 

  62. Barondeau DP, Kassmann CJ, Tainer JA, Getzoff ED (2006) Understanding GFP posttranslational chemistry: structures of designed variants that achieve backbone fragmentation, hydrolysis, and decarboxylation. J Am Chem Soc 128:4685–4693

    Article  CAS  Google Scholar 

  63. Barondeau DP, Tainer JA, Getzoff ED (2006) Structural evidence for an enolate intermediate in GFP fluorophore biosynthesis. J Am Chem Soc 128:3166–3168

    Article  CAS  Google Scholar 

  64. Sniegowski JA, Lappe JW, Patel HN, Huffman HA, Wachter RM (2005) Base catalysis of chromophore formation in Arg96 and Glu222 variants of green fluorescent protein. J Biol Chem 280:26248–26255

    Article  CAS  Google Scholar 

  65. Reid BG, Flynn GC (1997) Chromophore formation in green fluorescent protein. Biochemistry 36:6786–6791

    Article  CAS  Google Scholar 

  66. Zhang LP, Patel HN, Lappe JW, Wachter RM (2006) Reaction progress of chromophore biogenesis in green fluorescent protein. J Am Chem Soc 128:4766–4772

    Article  CAS  Google Scholar 

  67. Verkhusha VV, Chudakov DM, Gurskaya NG, Lukyanov S, Lukyanov KA (2004) Common pathway for the red chromophore formation in fluorescent proteins and chromoproteins. Chem Biol 11:845–854

    Article  CAS  Google Scholar 

  68. Kojima S, Ohkawa H, Hirano T, Maki S, Niwa H, Ohashi M, Inouye S, Tsuji FI (1998) Fluorescent properties of model chromophores of tyrosine-66 substituted mutants of Aequorea green fluorescent protein (GFP). Tetrahedron Lett 39:5239–5242

    Article  CAS  Google Scholar 

  69. Bell AF, He X, Wachter RM, Tonge PJ (2000) Probing the ground state structure of the green fluorescent protein chromophore using Raman spectroscopy. Biochemistry 39:4423–4431

    Article  CAS  Google Scholar 

  70. Schellenberg P, Johnson E, Esposito AP, Reid PJ, Parson WW (2001) Resonance Raman scattering by the green fluorescent protein and an analogue of its chromophore. J Phys Chem B 105:5316–5322

    Article  CAS  Google Scholar 

  71. He X, Bell AF, Tonge PJ (2002) Isotopic labeling and normal-mode analysis of a model green fluorescent protein chromophore. J Phys Chem B 106:6056–6066

    Article  CAS  Google Scholar 

  72. Webber NM, Meech SR (2007) Electronic spectroscopy and solvatochromism in the chromophore of GFP and the Y66F mutant. Photochem Photobiol Sci 6:976–981

    Article  CAS  Google Scholar 

  73. Patnaik SS, Trohalaki S, Naik RR, Stone MO, Pachter R (2007) Computational study of the absorption spectra of green fluorescent protein mutants. Biopolymers 85:253–263

    Article  CAS  Google Scholar 

  74. He X, Bell AF, Tonge PJ (2001) Photoconversion studies of green fluorescent protein and its model compounds. Biochemistry 40:8624

    Article  CAS  Google Scholar 

  75. He X, Bell AF, Tonge PJ (2003) Ground state isomerization of a model green fluorescent protein chromophore. FEBS Lett 549:35–38

    Article  CAS  Google Scholar 

  76. Voliani V, Bizzarri R, Nifosi R, Abbruzzetti S, Grandi E, Viappiani C, Beltram F (2008) Cis-trans photoisomerization of fluorescent-protein chromophores. J Phys Chem B 112:10714–10722

    Article  CAS  Google Scholar 

  77. Voityuk AA, Michel-Beyerle ME, Rosch N (1998) Structure and rotation barriers for ground and excited states of the isolated chromophore of the green fluorescent protein. Chem Phys Lett 296:269–276

    Article  CAS  Google Scholar 

  78. Weber W, Helms V, McCammon JA, Langhoff PW (1999) Shedding light on the dark and weakly fluorescent states of green fluorescent proteins. Proc Natl Acad Sci USA 96:6177–6182

    Article  CAS  Google Scholar 

  79. Dong J, Abulwerdi F, Baldridge A, Kowalik J, Solntsev KM, Tolbert LM (2008) Isomerization in fluorescent protein chromophores involves addition/elimination. J Am Chem Soc 130:14096–14098

    Article  CAS  Google Scholar 

  80. Yang JS, Huang GJ, Liu YH, Peng SM (2008) Photoisomerization of the green fluorescence protein chromophore and the meta- and para-amino analogues. Chem Commun:1344–1346

    Google Scholar 

  81. Chattoraj M, King BA, Bublitz GU, Boxer SG (1996) Ultra-fast excited state dynamics in green fluorescent protein: multiple states and proton transfer. Proc Natl Acad Sci USA 93:8362–8367

    Article  CAS  Google Scholar 

  82. Voityuk AA, MichelBeyerle ME, Rosch N (1997) Protonation effects on the chromophore of green fluorescent protein. Quantum chemical study of the absorption spectrum. Chem Phys Lett 272:162–167

    Article  CAS  Google Scholar 

  83. El Yazal J, Prendergast FG, Shaw DE, Pang Y-P (2000) Protonation states of the chromophore of denatured green fluorescent proteins predicted by ab initio calculations. J Am Chem Soc 122:11411–11415

    Article  CAS  Google Scholar 

  84. Brejc K, Sixma TK, Kitts PA, Kain SR, Tsien RY, Ormo M, Remington SJ (1997) Structural basis for dual excitation and photoisomerization of the Aequorea victoria green fluorescent protein. Proc Natl Acad Sci USA 94:2306–2311

    Article  CAS  Google Scholar 

  85. Elsliger MA, Wachter RM, Hanson GT, Kallio K, Remington SJ (1999) Structural and spectral response of green fluorescent protein variants to changes in pH. Biochemistry 38:5296–5301

    Article  CAS  Google Scholar 

  86. Scharnagl C, Raupp-Kossmann R, Fischer SF (1999) Molecular basis for pH sensitivity and proton transfer in green fluorescent protein: protonation and conformational substates from electrostatic calculations. Biophys J 77:1839–1857

    Article  CAS  Google Scholar 

  87. Bell AF, Stoner-Ma D, Wachter RM, Tonge PJ (2003) Light-driven decarboxylation of wild-type green fluorescent protein. J Am Chem Soc 125:6919–6926

    Article  CAS  Google Scholar 

  88. Ward WW, Cody CW, Hart RC, Cormier MJ (1980) Spectrophotometric identity of the energy transfer chromophores in Renilla and Aequorea green-fluorescent proteins. Photochem Photobiol 31:611–615

    Article  CAS  Google Scholar 

  89. Nienhaus K, Renzi F, Vallone B, Wiedenmann J, Nienhaus GU (2006) Chromophore-protein interactions in the anthozoan green fluorescent protein asFP499. Biophys J 91:4210–4220

    Article  CAS  Google Scholar 

  90. Jung G, Wiehler J, Zumbusch A (2005) The photophysics of green fluorescent protein: influence of the key amino acids at positions 65, 203, and 222. Biophys J 88:1932–1947

    Article  CAS  Google Scholar 

  91. Ando R, Hama H, Yamamoto-Hino M, Mizuno H, Miyawaki A (2002) An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein. Proc Natl Acad Sci USA 99:12651–12656

    Article  CAS  Google Scholar 

  92. Ando R, Mizuno H, Miyawaki A (2004) Regulated fast nucleocytoplasmic shuttling observed by reversible protein highlighting. Science 306:1370–1373

    Article  CAS  Google Scholar 

  93. Rosell FI, Boxer SG (2003) Polarized absorption spectra of green fluorescent protein single crystals: Transition dipole moment directions. Biochemistry 42:177–183

    Article  CAS  Google Scholar 

  94. Visser NV, Borst JW, Hink MA, van Hoek A, Visser AJWG (2005) Direct observation of resonance tryptophan-to-chromophore energy transfer in visible fluorescent proteins. Biophys Chem 116:207–212

    Article  CAS  Google Scholar 

  95. Bublitz G, King BA, Boxer SG (1998) Electronic structure of the chromophore in green fluorescent protein (GFP). J Am Chem Soc 120:9370–9371

    Article  CAS  Google Scholar 

  96. Helms V, Winstead C, Langhoff PW (2000) Low-lying electronic excitations of the green fluorescent protein chromophore. Theochem-J Mol Struct 506:179–189

    Article  CAS  Google Scholar 

  97. Vallverdu G, Demachy I, Ridard J, Levy B (2009) Using biased molecular dynamics and Brownian dynamics in the study of fluorescent proteins. Theochem-J Mol Struct 898:73–81

    Article  CAS  Google Scholar 

  98. Mandal D, Tahara T, Webber NM, Meech SR (2002) Ultrafast fluorescence of the chromophore of the green fluorescent protein in alcohol solutions. Chem Phys Lett 358:495–501

    Article  CAS  Google Scholar 

  99. Gepshtein R, Huppert D, Agmon N (2006) Deactivation mechanism of the green fluorescent chromophore. J Phys Chem B 110:4434–4442

    Article  CAS  Google Scholar 

  100. Kummer AD, Kompa C, Niwa H, Hirano T, Kojima S, Michel-Beyerle ME (2002) Viscosity-dependent fluorescence decay of the GFP chromophore in solution due to fast internal conversion. J Phys Chem B 106:7554–7559

    Article  CAS  Google Scholar 

  101. Mandal D, Tahara T, Meech SR (2004) Excited-state dynamics in the green fluorescent protein chromophore. J Phys Chem B 108:1102–1108

    Article  CAS  Google Scholar 

  102. Litvinenko KL, Webber NM, Meech SR (2001) An ultrafast polarisation spectroscopy study of internal conversion and orientational relaxation of the chromophore of the green fluorescent protein. Chem Phys Lett 346:47–53

    Article  CAS  Google Scholar 

  103. Webber NM, Litvinenko KL, Meech SR (2001) Radiationless relaxation in a synthetic analogue of the green fluorescent protein chromophore. J Phys Chem B 105:8036–8039

    Article  CAS  Google Scholar 

  104. Usman A, Mohammed OF, Nibbering ET, Dong J, Solntsev KM, Tolbert LM (2005) Excited-state structure determination of the green fluorescent protein chromophore. J Am Chem Soc 127:11214–11215

    Article  CAS  Google Scholar 

  105. Chen KY, Cheng YM, Lai CH, Hsu CC, Ho ML, Lee GH, Chou PT (2007) Ortho green fluorescence protein synthetic chromophore; excited-state intramolecular proton transfer via a seven-membered-ring hydrogen-bonding system. J Am Chem Soc 129:4534–4535

    Article  CAS  Google Scholar 

  106. Wu L, Burgess K (2008) Syntheses of highly fluorescent GFP-chromophore analogues. J Am Chem Soc 130:4089–4096

    Article  CAS  Google Scholar 

  107. Litvinenko KL, Webber NM, Meech SR (2003) Internal conversion in the chromophore of the green fluorescent protein: Temperature dependence and isoviscosity analysis. J Phys Chem A 107:2616–2623

    Article  CAS  Google Scholar 

  108. Maddalo SL, Zimmer M (2006) The role of the protein matrix in green fluorescent protein fluorescence. Photochem Photobiol 82:367–372

    Article  CAS  Google Scholar 

  109. Martin ME, Negri F, Olivucci M (2004) Origin, nature, and fate of the fluorescent state of the green fluorescent protein chromophore at the CASPT2//CASSCF resolution. J Am Chem Soc 126:5452–5464

    Article  CAS  Google Scholar 

  110. Toniolo A, Olsen S, Manohar L, Martinez TJ (2004) Conical intersection dynamics in solution: the chromophore of green fluorescent protein. Faraday Discuss 127:149–163

    Article  CAS  Google Scholar 

  111. Altoe P, Bernardi F, Garavelli M, Orlandi G, Negri F (2005) Solvent effects on the vibrational activity and photodynamics of the green fluorescent protein chromophore: a quantum-chemical study. J Am Chem Soc 127:3952–3963

    Article  CAS  Google Scholar 

  112. Olsen S, Lamothe K, MartiÃÅnez TJ (2010) Protonic gating of excited-state twisting and charge localization in GFP chromophores: a mechanistic hypothesis for reversible photoswitching. J Am Chem Soc 132:1192–1193

    Article  CAS  Google Scholar 

  113. Kummer AD, Kompa C, Lossau H, Pollinger-Dammer F, Michel-Beyerle ME, Silva CM, Bylina EJ, Coleman WJ, Yang MM, Youvan DC (1998) Dramatic reduction in fluorescence quantum yield in mutants of green fluorescent protein due to fast internal conversion. Chem Phys 237:183–193

    Article  CAS  Google Scholar 

  114. Wilmann PG, Petersen J, Pettikiriarachchi A, Buckle AM, Smith SC, Olsen S, Perugini MA, Devenish RJ, Prescott M, Rossjohn J (2005) The 2.1 angstrom crystal structure of the far-red fluorescent protein HcRed: Inherent conformational flexibility of the chromophore. J Mol Biol 349:223–237

    Article  CAS  Google Scholar 

  115. Mizuno H, Mal TK, Walchli M, Kikuchi A, Fukano T, Ando R, Jeyakanthan J, Taka J, Shiro Y, Ikura M, Miyawaki A (2008) Light-dependent regulation of structural flexibility in a photochromic fluorescent protein. Proc Natl Acad Sci USA 105:9227–9232

    Article  CAS  Google Scholar 

  116. Megley CM, Dickson LA, Maddalo SL, Chandler GJ, Zimmer M (2009) Photophysics and dihedral freedom of the chromophore in yellow, blue, and green fluorescent protein. J Phys Chem B 113:302–308

    Article  CAS  Google Scholar 

  117. Ward WW, Prentice HJ, Roth AF, Cody CW, Reeves SC (1982) Spectral perturbations of the aequoria green-fluorescent protein. Photochem Photobiol 35:803–808

    Article  CAS  Google Scholar 

  118. Lossau H, Kummer A, Heinecke R, Pollinger-Dammer F, Kompa C, Bieser G, Jonsson T, Silva CM, Yang MM, Youvan DC, Michel-Beyerle ME (1996) Time-resolved spectroscopy of wild-type and mutant green fluorescent proteins reveals excited state deprotonation consistent with fluorophore-protein interactions. Chem Phys 213:1–16

    Article  CAS  Google Scholar 

  119. Patterson GH, Knobel SM, Sharif WD, Kain SR, Piston DW (1997) Use of the green fluorescent protein and its mutants in quantitative fluorescence microscopy. Biophys J 73:2782–2790

    Article  CAS  Google Scholar 

  120. Perozzo MA, Ward KB, Thompson RB, Ward WW (1988) X-ray diffraction and time-resolved fluorescence analyses of Aequorea green fluorescent protein crystals. J Biol Chem 263:7713–7716

    CAS  Google Scholar 

  121. Villoing A, Ridhoir M, Cinquin B, Erard M, Alvarez L, Vallverdu G, Pernot P, Grailhe R, Merola F, Pasquier H (2008) Complex fluorescence of the cyan fluorescent protein: comparisons with the H148D variant and consequences for quantitative cell imaging. Biochemistry 47:12483–12492

    Article  CAS  Google Scholar 

  122. Suhling K, Siegel J, Phillips D, French PMW, Leveque-Fort S, Webb SED, Davis DM (2002) Imaging the environment of green fluorescent protein. Biophys J 83:3589–3595

    Article  CAS  Google Scholar 

  123. Borst JW, Hink MA, van Hoek A, Visser AJWG (2005) Effects of refractive index and viscosity on fluorescence and anisotropy decays of enhanced cyan and yellow fluorescent proteins. J Fluoresc 15:153–160

    Article  CAS  Google Scholar 

  124. Strickler SJ, Berg RA (1962) Relationship between absorption intensity and fluorescence lifetime of molecules. J Chem Phys 37:814–820

    Article  CAS  Google Scholar 

  125. Inouye S, Tsuji FI (1994) Evidence for redox forms of the Aequorea green fluorescent protein. FEBS Lett 351:211–214

    Article  CAS  Google Scholar 

  126. Palm GJ, Zdanov A, Gaitanaris GA, Stauber R, Pavlakis GN, Wlodawer A (1997) The structural basis for spectral variations in green fluorescent protein. Nat Struct Biol 4:361–365

    Article  CAS  Google Scholar 

  127. Bizzarri R, Nifosi R, Abbruzzetti S, Rocchia W, Guidi S, Arosio D, Garau G, Campanini B, Grandi E, Ricci F, Viappiani C, Beltram F (2007) Green fluorescent protein ground states: the influence of a second protonation site near the chromophore. Biochemistry 46:5494–5504

    Article  CAS  Google Scholar 

  128. Delagrave S, Hawtin RE, Silva CM, Yang MM, Youvan DC (1995) Red-shifted excitation mutants of the green fluorescent protein. Biotechnology (NY) 13:151–154

    Article  CAS  Google Scholar 

  129. Ehrig T, O'Kane DJ, Prendergast FG (1995) Green-fluorescent protein mutants with altered fluorescence excitation spectra. FEBS Lett 367:163–166

    Article  CAS  Google Scholar 

  130. Jaye AA, Stoner-Ma D, Matousek P, Towrie M, Tonge PJ, Meech SR (2005) Time resolved emission spectra of green fluorescent protein. Photochem Photobiol 82:373–379

    Article  CAS  Google Scholar 

  131. Crameri A, Whitehorn EA, Tate E, Stemmer WP (1996) Improved green fluorescent protein by molecular evolution using DNA shuffling. Nat Biotechnol 14:315–319

    Article  CAS  Google Scholar 

  132. Kennis JT, Larsen DS, van Stokkum IH, Vengris M, van Thor JJ, van Grondelle R (2004) Uncovering the hidden ground state of green fluorescent protein. Proc Natl Acad Sci USA 101:17988–17993

    Article  CAS  Google Scholar 

  133. Kneen M, Farinas J, Li Y, Verkman AS (1998) Green fluorescent protein as a noninvasive intracellular pH indicator. Biophys J 74:1591–1599

    Article  CAS  Google Scholar 

  134. Miesenbock G, De Angelis DA, Rothman JE (1998) Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394:192–195

    Article  CAS  Google Scholar 

  135. Violot S, Carpentier P, Blanchoin L, Bourgeois D (2009) Reverse pH-dependence of chromophore protonation explains the large stokes shift of the red fluorescent protein mKeima. J Am Chem Soc 131:10356–10357

    Article  CAS  Google Scholar 

  136. De Angelis DA, Miesenbock G, Zemelman BV, Rothman JE (1998) PRIM: proximity imaging of green fluorescent protein-tagged polypeptides. Proc Natl Acad Sci USA 95:12312–12316

    Article  Google Scholar 

  137. Hanson GT, Aggeler R, Oglesbee D, Cannon M, Capaldi RA, Tsien RY, Remington SJ (2004) Investigating mitochondrial redox potential with redox-sensitive green fluorescent protein indicators. J Biol Chem 279:13044–13053

    Article  CAS  Google Scholar 

  138. Nausch LWM, Lecloux J, Bonev AD, Nelson MT, Dostmann WR (2008) Differential patterning of cGMP in vascular smooth muscle cells revealed by single GFP-linked biosensors. Proc Natl Acad Sci USA 105:365–370

    Article  CAS  Google Scholar 

  139. Arnaut LG, Formosinho SJ (1993) Excited-state proton-transfer reactions.1. Fundamentals and intermolecular reactions. J Photochem Photobiol A-Chem 75:1–20

    Article  CAS  Google Scholar 

  140. Stoner-Ma D, Jaye AA, Matousek P, Towrie M, Meech SR, Tonge PJ (2005) Observation of excited-state proton transfer in green fluorescent protein using ultrafast vibrational spectroscopy. J Am Chem Soc 127:2864–2865

    Article  CAS  Google Scholar 

  141. van Thor JJ, Zanetti G, Ronayne KL, Towrie M (2005) Structural events in the photocycle of green fluorescent protein. J Phys Chem B 109:16099–16108

    Article  CAS  Google Scholar 

  142. Lill MA, Helms V (2002) Proton shuttle in green fluorescent protein studied by dynamic simulations. Proc Natl Acad Sci USA 99:2778–2781

    Article  CAS  Google Scholar 

  143. Vendrell O, Gelabert R, Moreno M, Lluch JM (2008) Operation of the proton wire in green fluorescent protein. A quantum dynamics simulation. J Phys Chem B 112:5500–5511

    Article  CAS  Google Scholar 

  144. Creemers TMH, Lock AJ, Subramaniam V, Jovin TM, Volker S (1999) Three photoconvertible forms of green fluorescent protein identified by spectral hole-burning (vol 6, pg 557, 1999). Nat Struct Biol 6:706

    Article  CAS  Google Scholar 

  145. Seebacher C, Deeg FW, Brauchle C, Wiehler J, Steipe B (1999) Stable low-temperature photoproducts and hole burning of green fluorescent protein (GFP). J Phys Chem B 103:7728–7732

    Article  CAS  Google Scholar 

  146. Bonsma S, Purchase R, Jezowski S, Gallus J, Konz F, Volker S (2005) Green and red fluorescent proteins: Photo- and thermally induced dynamics probed by site-selective spectroscopy and hole burning. Chemphyschem 6:838–849

    Article  CAS  Google Scholar 

  147. Wiehler J, Jung G, Seebacher C, Zumbusch A, Steipe B (2003) Mutagenic stabilization of the photocycle intermediate of green fluorescent protein (GFP). Chembiochem 4:1164–1171

    Article  CAS  Google Scholar 

  148. Striker G, Subramaniam V, Seidel CAM, Volkmer A (1999) Photochromicity and fluorescence lifetimes of green fluorescent protein. J Phys Chem B 103:8612–8617

    Article  CAS  Google Scholar 

  149. Saxena AM, Udgaonkar JB, Krishnamoorthy G (2005) Protein dynamics control proton transfer from bulk solvent to protein interior: a case study with a green fluorescent protein. Protein Sci 14:1787–1799

    Article  CAS  Google Scholar 

  150. Haupts U, Maiti S, Schwille P, Webb WW (1998) Dynamics of fluorescence fluctuations in green fluorescent protein observed by fluorescence correlation spectroscopy. Proc Natl Acad Sci USA 95:13573–13578

    Article  CAS  Google Scholar 

  151. Schwille P, Kummer S, Heikal AA, Moerner WE, Webb WW (2000) Fluorescence correlation spectroscopy reveals fast optical excitation-driven intramolecular dynamics of yellow fluorescent proteins. Proc Natl Acad Sci USA 97:151–156

    Article  CAS  Google Scholar 

  152. Mallik R, Udgaonkar JB, Krishnamoorthy G (2003) Kinetics of proton transfer in a green fluorescent protein: a laser-induced pH jump study. Proc Indian Acad Sci-Chem Sci 115:307–317

    Article  CAS  Google Scholar 

  153. Agmon N (2005) Proton pathways in green fluorescence protein. Biophys J 88:2452–2461

    Article  CAS  Google Scholar 

  154. Leiderman P, Huppert D, Agmon N (2006) Transition in the temperature-dependence of GFP fluorescence: From proton wires to proton exit. Biophys J 90:1009–1018

    Article  CAS  Google Scholar 

  155. Shu X, Leiderman P, Gepshtein R, Smith NR, Kallio K, Huppert D, Remington SJ (2007) An alternative excited-state proton transfer pathway in green fluorescent protein variant S205V. Protein Sci 16:2703–2710

    Article  CAS  Google Scholar 

  156. Stoner-Ma D, Jaye AA, Ronayne KL, Nappa J, Meech SR, Tonge PJ (2008) An alternate proton acceptor for excited-state proton transfer in green fluorescent protein: rewiring GFP. J Am Chem Soc 130:1227–1235

    Article  CAS  Google Scholar 

  157. Shi X, Basran J, Seward HE, Childs W, Bagshaw CR, Boxer SG (2007) Anomalous negative fluorescence anisotropy in yellow fluorescent protein (YFP 10C): quantitative analysis of FRET in YFP dimers. Biochemistry 46:14403–14417

    Article  CAS  Google Scholar 

  158. Ai HW, Shaner NC, Cheng Z, Tsien RY, Campbell RE (2007) Exploration of new chromophore structures leads to the identification of improved blue fluorescent proteins. Biochemistry 46:5904–5910

    Article  CAS  Google Scholar 

  159. Hanson GT, McAnaney TB, Park ES, Rendell ME, Yarbrough DK, Chu S, Xi L, Boxer SG, Montrose MH, Remington SJ (2002) Green fluorescent protein variants as ratiometric dual emission pH sensors. 1. Structural characterization and preliminary application. Biochemistry 41:15477–15488

    Article  CAS  Google Scholar 

  160. McAnaney TB, Park ES, Hanson GT, Remington SJ, Boxer SG (2002) Green fluorescent protein variants as ratiometric dual emission pH sensors. 2. Excited-state dynamics. Biochemistry 41:15489–15494

    Article  CAS  Google Scholar 

  161. Hosoi H, Mizuno H, Miyawaki A, Tahara T (2006) Competition between energy and proton transfer in ultrafast excited-state dynamics of an oligomeric fluorescent protein red Kaede. J Phys Chem B 110:22853–22860

    Article  CAS  Google Scholar 

  162. Henderson JN, Osborn MF, Koon N, Gepshtein R, Huppert D, Remington SJ (2009) Excited state proton transfer in the red fluorescent protein mKeima. J Am Chem Soc 131:13212–13213

    Article  CAS  Google Scholar 

  163. van Thor JJ, Pierik AJ, Nugteren-Roodzant I, Xie A, Hellingwerf KJ (1998) Characterization of the photoconversion of green fluorescent protein with FTIR spectroscopy. Biochemistry 37:16915–16921

    Article  Google Scholar 

  164. van Thor JJ, Georgiev GY, Towrie M, Sage JT (2005) Ultrafast and low barrier motions in the photoreactions of the green fluorescent protein. J Biol Chem 280:33652–33659

    Article  CAS  Google Scholar 

  165. Henderson JN, Gepshtein R, Heenan JR, Kallio K, Huppert D, Remington SJ (2009) Structure and mechanism of the photoactivatable green fluorescent protein. J Am Chem Soc 131:4176–4177

    Article  CAS  Google Scholar 

  166. van Thor JJ, Gensch T, Hellingwerf KJ, Johnson LN (2002) Phototransformation of green fluorescent protein with UV and visible light leads to decarboxylation of glutamate 222. Nat Struct Biol 9:37–41

    Article  CAS  Google Scholar 

  167. van Thor JJ (2009) Photoreactions and dynamics of the green fluorescent protein. Chem Soc Rev 38:2935–2950

    Article  Google Scholar 

  168. Yokoe H, Meyer T (1996) Spatial dynamics of GFP-tagged proteins investigated by local fluorescence enhancement. Nat Biotechnol 14:1252–1256

    Article  CAS  Google Scholar 

  169. Lippincott-Schwartz J, Patterson GH (2008) Fluorescent proteins for photoactivation experiments. In: Sullivan KF (ed) Fluorescent proteins, 2nd edn. San Diego, Elsevier Academic Press Inc, pp 45–63

    Chapter  Google Scholar 

  170. McAnaney TB, Zeng W, Doe CFE, Bhanji N, Wakelin S, Pearson DS, Abbyad P, Shi XH, Boxer SG, Bagshaw CR (2005) Protonation, photobleaching, and photoactivation of yellow fluorescent protein (YFP 10C): a unifying mechanism. Biochemistry 44:5510–5524

    Article  CAS  Google Scholar 

  171. Habuchi S, Cotlet M, Gensch T, Bednarz T, Haber-Pohlmeier S, Rozenski J, Dirix G, Michiels J, Vanderleyden J, Heberle J, De Schryver FC, Hofkens J (2005) Evidence for the isomerization and decarboxylation in the photoconversion of the red fluorescent protein DsRed. J Am Chem Soc 127:8977–8984

    Article  CAS  Google Scholar 

  172. Chudakov DM, Verkhusha VV, Staroverov DB, Souslova EA, Lukyanov S, Lukyanov KA (2004) Photoswitchable cyan fluorescent protein for protein tracking. Nat Biotechnol 22:1435–1439

    Article  CAS  Google Scholar 

  173. Wiedenmann J, Ivanchenko S, Oswald F, Schmitt F, Rocker C, Salih A, Spindler KD, Nienhaus GU (2004) EosFP, a fluorescent marker protein with UV-inducible green-to-red fluorescence conversion. Proc Natl Acad Sci USA 101:15905–15910

    Article  CAS  Google Scholar 

  174. Gurskaya NG, Verkhusha VV, Shcheglov AS, Staroverov DB, Chepurnykh TV, Fradkov AF, Lukyanov S, Lukyanov KA (2006) Engineering of a monomeric green-to-red photoactivatable fluorescent protein induced by blue light. Nat Biotechnol 24:461–465

    Article  CAS  Google Scholar 

  175. Petersen J, Wilmann PG, Beddoe T, Oakley AJ, Devenish RJ, Prescott M, Rossjohn J (2003) The 2.0-A crystal structure of eqFP611, a far red fluorescent protein from the sea anemone Entacmaea quadricolor. J Biol Chem 278:44626–44631

    Article  CAS  Google Scholar 

  176. Henderson JN, Remington SJ (2005) Crystal structures and mutational analysis of amFP486, a cyan fluorescent protein from Anemonia majano. Proc Natl Acad Sci USA 102:12712–12717

    Article  CAS  Google Scholar 

  177. Pletnev S, Shcherbo D, Chudakov DM, Pletneva N, Merzlyak EM, Wlodawer A, Dauter Z, Pletnev V (2008) A crystallographic study of bright far-red fluorescent protein mKate reveals pH-induced cis-trans Isomerization of the chromophore. J Biol Chem 283:28980–28987

    Article  CAS  Google Scholar 

  178. Ai HW, Henderson JN, Remington SJ, Campbell RE (2006) Directed evolution of a monomeric, bright and photostable version of Clavularia cyan fluorescent protein: structural characterization and applications in fluorescence imaging. Biochem J 400:531–540

    Article  CAS  Google Scholar 

  179. Andresen M, Wahl MC, Stiel AC, Grater F, Schafer LV, Trowitzsch S, Weber G, Eggeling C, Grubmuller H, Hell SW, Jakobs S (2005) Structure and mechanism of the reversible photoswitch of a fluorescent protein. Proc Natl Acad Sci USA 102:13070–13074

    Article  CAS  Google Scholar 

  180. Wilmann PG, Turcic K, Battad JM, Wilce MC, Devenish RJ, Prescott M, Rossjohn J (2006) The 1.7 A crystal structure of Dronpa: a photoswitchable green fluorescent protein. J Mol Biol 364:213–224

    Article  CAS  Google Scholar 

  181. Andresen M, Stiel AC, Trowitzsch S, Weber G, Eggeling C, Wahl MC, Hell SW, Jakobs S (2007) Structural basis for reversible photoswitching in Dronpa. Proc Natl Acad Sci USA 104:13005–13009

    Article  CAS  Google Scholar 

  182. Nifosi R, Ferrari A, Arcangeli C, Tozzini V, Pellegrini V, Beltram F (2003) Photoreversible dark state in a tristable green fluorescent protein variant. J Phys Chem B 107:1679–1684

    Article  CAS  Google Scholar 

  183. Sinnecker D, Voigt P, Hellwig N, Schaefer M (2005) Reversible photobleaching of enhanced green fluorescent proteins. Biochemistry 44:7085–7094

    Article  CAS  Google Scholar 

  184. Luin S, Voliani V, Lanza G, Bizzarri R, Nifosi R, Amat P, Tozzini V, Serresi M, Beltram F (2009) Raman study of chromophore states in photochromic fluorescent proteins. J Am Chem Soc 131:96–103

    Article  CAS  Google Scholar 

  185. Bizzarri R, Serresi M, Cardarelli F, Abbruzzetti S, Campanini B, Viappiani C, Beltram F (2009) Single amino acid replacement makes Aequorea victoria fluorescent proteins reversibly photoswitchable. J Am Chem Soc 132:85–95

    Article  CAS  Google Scholar 

  186. Henderson JN, Ai HW, Campbell RE, Remington SJ (2007) Structural basis for reversible photobleaching of a green fluorescent protein homologue. Proc Natl Acad Sci USA 104:6672–6677

    Article  CAS  Google Scholar 

  187. Loos DC, Habuchi S, Flors C, Hotta J, Wiedenmann J, Nienhaus GU, Hofkens J (2006) Photoconversion in the red fluorescent protein from the sea anemone Entacmaea quadricolor: is cis-trans isomerization involved? J Am Chem Soc 128:6270–6271

    Article  CAS  Google Scholar 

  188. Adam V, Lelimousin M, Boehme S, Desfonds G, Nienhaus K, Field MJ, Wiedenmann J, McSweeney S, Nienhaus GU, Bourgeois D (2008) Structural characterization of IrisFP, an optical highlighter undergoing multiple photo-induced transformations. Proc Natl Acad Sci USA 105:18343–18348

    Article  CAS  Google Scholar 

  189. Malo GD, Pouwels LJ, Wang M, Weichsel A, Montfort WR, Rizzo MA, Piston DW, Wachter RM (2007) X-ray structure of Cerulean GFP: a tryptophan-based chromophore useful for fluorescence lifetime imaging. Biochemistry 46:9865–9873

    Article  CAS  Google Scholar 

  190. Chudakov DM, Feofanov AV, Mudrik NN, Lukyanov S, Lukyanov KA (2003) Chromophore environment provides clue to “kindling fluorescent protein” riddle. J Biol Chem 278:7215–7219

    Article  CAS  Google Scholar 

  191. Nifosi R, Tozzini V (2006) Cis-trans photolsomerization of the chromophore in the green fluorescent protein variant E(2)GFP: a molecular dynamics study. Chem Phys 323:358–368

    Article  CAS  Google Scholar 

  192. Dickson RM, Cubitt AB, Tsien RY, Moerner WE (1997) On/off blinking and switching behaviour of single molecules of green fluorescent protein. Nature 388:355–358

    Article  CAS  Google Scholar 

  193. Kirber MT, Chen K, Keaney JF Jr (2007) YFP photoconversion revisited: confirmation of the CFP-like species. Nat Meth 4:767–768

    Article  CAS  Google Scholar 

  194. Day RN, Davidson MW (2009) The fluorescent protein palette: tools for cellular imaging. Chem Soc Rev 38:2887–2921

    Article  CAS  Google Scholar 

  195. Tomosugi W, Matsuda T, Tani T, Nemoto T, Kotera I, Saito K, Horikawa K, Nagai T (2009) An ultramarine fluorescent protein with increased photostability and pH insensitivity. Nat Meth 6:351–353

    Article  CAS  Google Scholar 

  196. Morozova K, Verkhusha VV, Perskyi Y (2009) Directed molecular evolution to develop new fluorescent proteins for biotechnological applications, Proceedings of the VIIth Parnas conference on biochemistry and molecular biology. Ukr Biokhim Zh 81(4):304

    Google Scholar 

  197. Dong J, Solntsev KM, Tolbert LM (2006) Solvatochromism of the green fluorescence protein chromophore and its derivatives. J Am Chem Soc 128:12038–12039

    Article  CAS  Google Scholar 

  198. Abbyad P, Childs W, Shi X, Boxer SG (2007) Dynamic Stokes shift in green fluorescent protein variants. Proc Natl Acad Sci USA 104:20189–20194

    Article  CAS  Google Scholar 

  199. Shu X, Wang L, Colip L, Kallio K, Remington SJ (2009) Unique interactions between the chromophore and glutamate 16 lead to far-red emission in a red fluorescent protein. Protein Sci 18:460–466

    Article  CAS  Google Scholar 

  200. Wachter RM, Elsliger MA, Kallio K, Hanson GT, Remington SJ (1998) Structural basis of spectral shifts in the yellow-emission variants of green fluorescent protein. Structure 6:1267–1277

    Article  CAS  Google Scholar 

  201. Barstow B, Ando N, Kim CU, Gruner SM (2008) Alteration of citrine structure by hydrostatic pressure explains the accompanying spectral shift. Proc Natl Acad Sci USA 105:13362–13366

    Article  CAS  Google Scholar 

  202. Shu X, Kallio K, Shi X, Abbyad P, Kanchanawong P, Childs W, Boxer SG, Remington SJ (2007) Ultrafast excited-state dynamics in the green fluorescent protein variant S65T/H148D. 1. Mutagenesis and structural studies. Biochemistry 46:12005–12013

    Article  CAS  Google Scholar 

  203. Malo GD, Wang M, Wu D, Stelling AL, Tonge PJ, Wachter RM (2008) Crystal structure and Raman studies of dsFP483, a cyan fluorescent protein from Discosoma striata. J Mol Biol 378:871–886

    Article  CAS  Google Scholar 

  204. Ai HW, Olenych SG, Wong P, Davidson MW, Campbell RE (2008) Hue-shifted monomeric variants of Clavularia cyan fluorescent protein: identification of the molecular determinants of color and applications in fluorescence imaging. BMC Biol 6:13. doi:10.1186/1741-2007-1186-1113

    Article  CAS  Google Scholar 

  205. Takanishi CL, Bykova EA, Cheng W, Zheng J (2006) GFP-based FRET analysis in live cells. Brain Res 1091:132–139

    Article  CAS  Google Scholar 

  206. Tramier M, Gautier I, Piolot T, Ravalet S, Kemnitz K, Coppey J, Durieux C, Mignotte V, Coppey-Moisan M (2002) Picosecond-hetero-FRET microscopy to probe protein-protein interactions in live cells. Biophys J 83:3570–3577

    Article  CAS  Google Scholar 

  207. Rizzo MA, Springer GH, Granada B, Piston DW (2004) An improved cyan fluorescent protein variant useful for FRET. Nat Biotechnol 22:445–449

    Article  CAS  Google Scholar 

  208. Nguyen AW, Daugherty PS (2005) Evolutionary optimization of fluorescent proteins for intracellular FRET. Nat Biotechnol 23:355–360

    Article  CAS  Google Scholar 

  209. Kremers GJ, Goedhart J, van Munster EB, Gadella TWJ (2006) Cyan and yellow super fluorescent proteins with improved brightness, protein folding, and FRET Forster radius. Biochemistry 45:6570–6580

    Article  CAS  Google Scholar 

  210. Goedhart J, van Weeren L, Hink MA, Vischer NO, Jalink K, Gadella TWJ (2010) Bright cyan fluorescent protein variants identified by fluorescence lifetime screening. Nat Meth 7:137–139

    Article  CAS  Google Scholar 

  211. Day RN, Booker CF, Periasamy A (2008) Characterization of an improved donor fluorescent protein for Forster resonance energy transfer microscopy. J Biomed Opt 13:031203. doi:10.1117/1111.2939094

    Article  CAS  Google Scholar 

  212. Subach OM, Gundorov IS, Yoshimura M, Subach FV, Zhang JH, Gruenwald D, Souslova EA, Chudakov DM, Verkhusha VV (2008) Conversion of red fluorescent protein into a bright blue probe. Chem Biol 59:1116–1124

    Article  CAS  Google Scholar 

  213. Campbell RE, Tour O, Palmer AE, Steinbach PA, Baird GS, Zacharias DA, Tsien RY (2002) A monomeric red fluorescent protein. Proc Natl Acad Sci U S A 99:7877–7882

    Article  CAS  Google Scholar 

  214. Drobizhev M, Tillo S, Makarov NS, Hughes TE, Rebane A (2009) Color hues in red fluorescent proteins are due to internal quadratic stark effect. J Phys Chem B 113:12860–12864

    Article  CAS  Google Scholar 

  215. Alvarez LA, Merola F, Erard M, Rusconi F (2009) Mass spectrometry-based structural dissection of fluorescent proteins. Biochemistry 48:3810–3812

    Article  CAS  Google Scholar 

  216. Mondal PP, Diaspro A (2007) Reduction of higher-order photobleaching in two-photon excitation microscopy. Phys Rev E 75:6. doi:10.1103/PhysRevE.1175.061904

    Article  CAS  Google Scholar 

  217. Hofmann M, Eggeling C, Jakobs S, Hell SW (2005) Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. Proc Natl Acad Sci U S A 102:17565–17569

    Article  CAS  Google Scholar 

  218. Patterson GH, Piston DW (2000) Photobleaching in two-photon excitation microscopy. Biophys J 78:2159–2162

    Article  CAS  Google Scholar 

  219. Tretyakova YA, Pakhomov AA, Martynov VI (2007) Chromophore structure of the kindling fluorescent protein asFP595 from Anemonia sulcata. J Am Chem Soc 129:7748–7749

    Article  CAS  Google Scholar 

  220. Remington SJ, Wachter RM, Yarbrough DK, Branchaud B, Anderson DC, Kallio K, Lukyanov KA (2005) zFP538, a yellow-fluorescent protein from Zoanthus, contains a novel three-ring chromophore. Biochemistry 44:202–212

    Article  CAS  Google Scholar 

  221. Shaner NC, Campbell RE, Steinbach PA, Giepmans BN, Palmer AE, Tsien RY (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22:1567–1572

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Jacqueline Ridard, Marie Erard, Agathe Espagne, and Dominique Bourgeois for fruitful discussions and critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabienne Merola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Merola, F., Levy, B., Demachy, I., Pasquier, H. (2010). Photophysics and Spectroscopy of Fluorophores in the Green Fluorescent Protein Family. In: Demchenko, A. (eds) Advanced Fluorescence Reporters in Chemistry and Biology I. Springer Series on Fluorescence, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04702-2_11

Download citation

Publish with us

Policies and ethics