Skip to main content

Demand-Driven Visual Information Acquisition

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5815))

Abstract

Fast, reliable and demand-driven acquisition of visual information is the key to represent visual scenes efficiently. To achieve this efficiency, a cognitive vision system must plan the utilization of its processing resources to acquire only information relevant for the task. Here, the incorporation of long-term knowledge plays a major role on deciding which information to gather. In this paper, we present a first approach to make use of the knowledge about the world and its structure to plan visual actions. We propose a method to schedule those visual actions to allow for a fast discrimination between objects that are relevant or irrelevant for the task. By doing so, we are able to reduce the system’s computational demand. A first evaluation of our ideas is given using a proof-of-concept implementation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yarbus, A.L.: Eye Movements and Vision. Plenum Press, New York (1967)

    Google Scholar 

  2. Pashler, H.: Familiarity and visual change detection. Perception and Psychophysics 44(4), 369–378 (1988)

    Google Scholar 

  3. Just, M.A., Carpenter, P.A.: Eye fixations and cognitive processes. Cognitive Psychology 8(4), 441–480 (1976)

    Article  Google Scholar 

  4. Henderson, J.M., Weeks, P.A., Hollingworth, A.: The effects of semantic consistency on eye movements during complex scene viewing. Experimental Psychology: Human Perception and Performance 25(1), 210–228 (1999)

    Article  Google Scholar 

  5. Ballard, D.H., Hayhoe, M.M., Pelz, J.B.: Memory representations in natural tasks. Cognitive Neuroscience (1995)

    Google Scholar 

  6. Triesch, J., Ballard, D.H., Hayhoe, M.M., Sullivan, B.T.: What you see is what you need. Journal of Vision 3(1), 86–94 (2003)

    Google Scholar 

  7. Intraub, H.: The representation of visual scenes. Trends in Cognitive Sciences 1(6), 217–221 (1997)

    Article  Google Scholar 

  8. Tsotsos, J.K.: On the relative complexity of active vs. passive visual search. International Journal of Computer Vision 7(2), 127–141 (1992)

    Article  Google Scholar 

  9. Bajcsy, R.: Active perception vs. passive perception. In: Proceedings of the IEEE Workshop on Computer Vision: Representation and Control, pp. 55–62 (1985)

    Google Scholar 

  10. Aloimonos, Y.: Introduction. In: Active Vision Revisited, pp. 1–18. Lawrence Erlbaum Associates, Hillsdale (1993)

    Google Scholar 

  11. Ballard, D.H.: Animate vision. Artificial Intelligence 48(1), 57–86 (1991)

    Article  MathSciNet  Google Scholar 

  12. Navalpakkam, V., Itti, L.: Modeling the influence of task on attention. Vision Research 45(2), 205–231 (2005)

    Article  Google Scholar 

  13. Hayhoe, M.: Vision using routines: A functional account of vision. Visual Cognition (7), 43–64 (2000)

    Article  Google Scholar 

  14. Eggert, J., Rebhan, S., Körner, E.: First steps towards an intentional vision system. In: Proc. International Conference on Computer Vision Systems (2007)

    Google Scholar 

  15. Navalpakkam, V., Itti, L.: Search goal tunes visual features optimally. Neuron 53(4), 605–617 (2007)

    Article  Google Scholar 

  16. Ullman, S.: Visual routines. Cognition 18 (1984)

    Google Scholar 

  17. Röhrbein, F., Eggert, J., Körner, E.: A cortex-inspired neural-symbolic network for knowledge representation. In: Proceedings of the 3rd International Workshop on Neural-Symbolic Learning and Reasoning (2007)

    Google Scholar 

  18. Rebhan, S., Einecke, N., Eggert, J.: Consistent modeling of functional dependencies along with world knowledge. In: Proceedings of World Academy of Science, Engineering and Technology: International Conference on Cognitive Information Systems Engineering, vol. 54, pp. 341–348 (2009)

    Google Scholar 

  19. Rebhan, S., Röhrbein, F., Eggert, J.P., Körner, E.: Attention modulation using short- and long-term knowledge. In: Gasteratos, A., Vincze, M., Tsotsos, J.K. (eds.) ICVS 2008. LNCS, vol. 5008, pp. 151–160. Springer, Heidelberg (2008)

    Google Scholar 

  20. Körner, E., Gewaltig, M.O., Körner, U., Richter, A., Rodemann, T.: A model of computation in neocortical architecture. Neural Networks 12(7–8), 989–1006 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rebhan, S., Richter, A., Eggert, J. (2009). Demand-Driven Visual Information Acquisition. In: Fritz, M., Schiele, B., Piater, J.H. (eds) Computer Vision Systems. ICVS 2009. Lecture Notes in Computer Science, vol 5815. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04667-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04667-4_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04666-7

  • Online ISBN: 978-3-642-04667-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics