Skip to main content

Bio-inspired Connectionist Architecture for Visual Detection and Refinement of Shapes

  • Conference paper
Artificial Neural Networks – ICANN 2009 (ICANN 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5769))

Included in the following conference series:

Abstract

In this paper we propose a bio-inspired architecture for the visual reconstruction of silhouettes of moving objects, based on the behaviour of simple cells, complex cells and the Long-Range interactions of these neurons present in the primary visual cortex of the primates. This architecture was tested with real sequences of images acquired in natural environments. The results combined with our previous results show the flexibility of our propose since it allows not only to reconstruct the silhouettes of objects in general, but also, allows to distinguish between different types of objects in motion. This distinction is necessary since our future objective is the identification of people by their gait.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cunado, D., Nixon, M., Carter, J.: Automatic extraction and description of human gait models for recognition purposes. Comput. Vis. Image Underst. 90, 1–41 (2003)

    Article  Google Scholar 

  2. Moldenhauer, J., Boesnach, I., Stein, T.: Composition of complex motion models from elementary human motions. Articulated Motion and Deformable Objects 12, 68–77 (2006)

    Article  Google Scholar 

  3. Xu, H., Jiwei, L., Lei, L., Zhiliang, W.: Gait recognition considering directions of walking. IEEE Cybernetics and Intelligent Systems, 1–5 (2006)

    Google Scholar 

  4. Mahmoudi, S., Daoudi, M.: A probabilistic approach for 3d shape retrieval by characteristic views. Pattern Recogn. Lett. 28(13), 1705–1718 (2007)

    Article  Google Scholar 

  5. Yang, H.D., Lee, S.W.: Reconstruction of 3d human body pose from stereo image sequences based on top-down learning. Pattern Recogn. 40(11), 3120–3131 (2007)

    Article  MATH  Google Scholar 

  6. Chen, H., Bhanu, B.: 3d free-form object recognition in range images using local surface patches. Pattern Recogn. Lett. 28(10), 1252–1262 (2007)

    Article  Google Scholar 

  7. Yan, P., Bowyer, K.W.: A fast algorithm for icp-based 3d shape biometrics. Comput. Vis. Image Underst. 107(3), 195–202 (2007)

    Article  Google Scholar 

  8. Lin, W.S., Fang, C.H.: Synthesized affine invariant function for 2d shape recognition. Pattern Recogn. 40(7), 1921–1928 (2007)

    Article  MATH  Google Scholar 

  9. Mokhber, A., Achard, C., Milgram, M.: Recognition of human behavior by space-time silhouette characterization. Pattern Recogn. Lett. 29(1), 81–89 (2008)

    Article  Google Scholar 

  10. Rogez, G., Orrite-Uruñuela, C., Martínez-del Rincón, J.: A spatio-temporal 2d-models framework for human pose recovery in monocular sequences. Pattern Recognition 41(9), 2926–2944 (2008)

    Article  MATH  Google Scholar 

  11. Schlei, B.R.: A new computational framework for 2d shape-enclosing contours. CoRR cs.CV/0405029 (2004)

    Google Scholar 

  12. Shen, C., Lin, X., Shi, Y.: Human pose estimation from corrupted silhouettes using a sub-manifold voting strategy in latent variable space. Pattern Recogn. Lett. 30(4), 421–431 (2009)

    Article  Google Scholar 

  13. Ahmad, M., Lee, S.W.: Human action recognition using shape and clg-motion flow from multi-view image sequences. Pattern Recogn. 41(7), 2237–2252 (2008)

    Article  MATH  Google Scholar 

  14. Denman, S., Chandran, V., Sridharan, S.: An adaptive optical flow technique for person tracking systems. Pattern Recogn. Lett. 28(10), 1232–1239 (2007)

    Article  Google Scholar 

  15. Laptev, I., Lindeberg, T.: Velocity-adapted spatio-temporal receptive fields for direct recognition of activities. IVC 22, 61–66 (2002)

    Google Scholar 

  16. Sereno, M.I., Dale, A.M., Belliveau, J.W., Brady, T.J., Rosen, B.R., Tootell, R.B.H.: Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268, 889–893 (1995)

    Article  Google Scholar 

  17. Lerner, Y., Epshtein, B., Ullman, S., Malach, R.: Class information predicts activation by object fragments in human object areas. J. Cognitive Neuroscience 20(7), 1189–1206 (2008)

    Article  Google Scholar 

  18. Van Essen, D.C., Anderson, C.H.: Information processing strategies and pathways in the primate retina and visual cortex, pp. 43–72. Academic Press Professional, Inc., San Diego (1990)

    Google Scholar 

  19. Kouh, M., Poggio, T.: A canonical neural circuit for cortical nonlinear operations. Neural Comput. 20(6), 1427–1451 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Giese, M., Poggio, T.: Neural mechanisms for the recognition of biological movements and acti on. Nature Reviews Neuroscience 4, 179–192 (2003)

    Article  Google Scholar 

  21. Laxmi, V., Carter, J.N., Damper, R.I.: Biologically-inspired human motion detection. In: 10th European Symposium on Artificial Neural Networks, pp. 95–100 (2002)

    Google Scholar 

  22. Lange, J., Lappe, M.: The role of spatial and temporal information in biological motion perception. In: Advances in Cognitive Psychology, vol. 3, pp. 419–428. University of Muenster, Germany (2007)

    Google Scholar 

  23. Livingstone, M.S., Hubel, D.H.: Connections between layer 4b of area 17 and the thick cytochrome oxidase stripes of area 18 in the squirrel monkey. J. Neurosci. 7, 3371–3377 (1987)

    Google Scholar 

  24. Fellez, W.A., Taylor, J.G.: Establishing retinotopy by lateral-inhibition type homogeneous neural fields. Neurocomputing 48, 313–322 (2002)

    Article  MATH  Google Scholar 

  25. Latham, P.E., Nirenberg, S.: Computing and stability in cortical networks. Neural Computation, 1385–1412 (2004)

    Google Scholar 

  26. Moga, S.: Apprendre par imitation: une nouvelle voie d’apprentissage pour les robots autonomes. PhD thesis, Université de Cergy-Pontoise, Cergy-Pontoise, France (September 2000)

    Google Scholar 

  27. Collins, K.: 13. In the Primate Visual System, pp. 311–337. CRC Press, Boca Raton (2004)

    Google Scholar 

  28. Sirosh, J., Miikkulainen, R.: Topographic receptive fields and patterned lateral interaction in a self-organizing model of the primary visual cortex. Neural Computation 9(3), 577–594 (1997)

    Article  Google Scholar 

  29. Bair, W., Cavanaugh, J.R., Movshon, J.A.: Time course and time-distance relationships for surround suppression in macaque v1 neurons. J. Neurosci. 23(20), 7690–7701 (2003)

    Google Scholar 

  30. Schwabe, L., Obermayer, K., Angelucci, A., Bressloff, P.C.: The role of feedback in shaping the extra-classical receptive field of cortical neurons: A recurrent network model. J. Neurosci. 26(36), 9117–9129 (2006)

    Article  Google Scholar 

  31. Sánchez Orellana, P.L., Castellanos Sánchez, C.: A bio-inspired connectionist architecture for visual classification of moving objects. In: ICANN (1), pp. 982–990 (2008)

    Google Scholar 

  32. Hansen, T., Neumann, H.: A recurrent model of contour integration in primary visual cortex. J. Vis. 8(8), 1–25 (2008)

    Article  Google Scholar 

  33. Castellanos Sánchez, C.: Neuromimetic indicators for visual perception of motion. In: 2nd International Symposium on Brain, Vision and Artificial Intelligence, vol. 103, pp. 134–143 (2007)

    Google Scholar 

  34. Kjaer, T.W., Gawne, T.J., Hertz, J.A., Richmond, B.J.: Insensitivity of V1 Complex Cell Responses to Small Shifts in the Retinal Image of Complex Patterns. J. Neurophysiol. 78(6), 3187–3197 (1997)

    Google Scholar 

  35. Lauritzen, T.Z., Miller, K.D.: Different Roles for Simple-Cell and Complex-Cell Inhibition in V1. J. Neurosci. 23(6), 10201–10213 (2003)

    Google Scholar 

  36. Ersoy, B., Kagan, I., Rucci, M., Snodderly, M.: Modeling the responses of v1 complex cells to natural temporal inputs. J. Vis. 4(8), 278–278 (2004)

    Article  Google Scholar 

  37. Petkov, N., Kruizinga, P.: Computational models of visual neurons specialised in the detection of periodic and aperiodic oriented visual stimuli: bar and grating cells. Biological Cybernetics 76(2), 83–96 (1997)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sánchez Orellana, P.L., Castellanos Sánchez, C. (2009). Bio-inspired Connectionist Architecture for Visual Detection and Refinement of Shapes. In: Alippi, C., Polycarpou, M., Panayiotou, C., Ellinas, G. (eds) Artificial Neural Networks – ICANN 2009. ICANN 2009. Lecture Notes in Computer Science, vol 5769. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04277-5_75

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04277-5_75

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04276-8

  • Online ISBN: 978-3-642-04277-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics