Skip to main content

Symmetry-Aware Mesh Processing

  • Conference paper
Book cover Mathematics of Surfaces XIII (Mathematics of Surfaces 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5654))

Included in the following conference series:

Abstract

Perfect, partial, and approximate symmetries are pervasive in 3D surface meshes of real-world objects. However, current digital geometry processing algorithms generally ignore them, instead focusing on local shape features and differential surface properties. This paper investigates how detection of large-scale symmetries can be used to guide processing of 3D meshes. It investigates a framework for mesh processing that includes steps for symmetrization (applying a warp to make a surface more symmetric) and symmetric remeshing (approximating a surface with a mesh having symmetric topology). These steps can be used to enhance the symmetries of a mesh, to decompose a mesh into its symmetric parts and asymmetric residuals, and to establish correspondences between symmetric mesh features. Applications are demonstrated for modeling, beautification, and simplification of nearly symmetric surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ferguson, R.W.: Modeling orientation effects in symmetry detection: The role of visual structure. In: Proc. Conf. Cognitive Science Society (2000)

    Google Scholar 

  2. Zabrodsky, H., Peleg, S., Avnir, D.: Symmetry as a continuous feature. Trans. PAMI 17(12), 1154–1166 (1995)

    Article  Google Scholar 

  3. Mitra, N.J., Guibas, L., Pauly, M.: Partial and approximate symmetry detection for 3D geometry 25(3), 560–568 (2006)

    Google Scholar 

  4. Podolak, J., Shilane, P., Golovinskiy, A., Rusinkiewicz, S., Funkhouser, T.: A planar-reflective symmetry transform for 3D shapes. ACM Transactions on Graphics (Proc. Siggraph) 25(3) (2006)

    Google Scholar 

  5. Martinet, A., Soler, C., Holzschuch, N., Sillion, F.: Accurately detecting symmetries of 3D shapes. Technical Report RR-5692, INRIA (2005)

    Google Scholar 

  6. Terzopoulos, D., Witkin, A., Kass, M.: Symmetry-seeking models and 3D object reconstruction 3(1), 221 (1987)

    Google Scholar 

  7. Zabrodsky, H., Peleg, S., Avnir, D.: Completion of occluded shapes using symmetry. In: Proc. CVPR, pp. 678–679 (1993)

    Google Scholar 

  8. Zabrodsky, H., Weinshall, D.: Using bilateral symmetry to improve 3D reconstruction from image sequences. Comput. Vis. Image Underst. 67(1), 48–57 (1997)

    Article  Google Scholar 

  9. Kazhdan, M., Chazelle, B., Dobkin, D., Funkhouser, T., Rusinkiewicz, S.: A reflective symmetry descriptor for 3D models. Algorithmica 38(1) (2003)

    Google Scholar 

  10. Thrun, S., Wegbreit, B.: Shape from symmetry. In: Proceedings of the International Conference on Computer Vision (ICCV), Bejing, China. IEEE, Los Alamitos (2005)

    Google Scholar 

  11. Gal, R., Cohen-Or, D.: Salient geometric features for partial shape matching and similarity. ACM Transaction on Graphics (2005)

    Google Scholar 

  12. Mills, B.I., Langbein, F.C., Marshall, A.D., Martin, R.R.: Approximate symmetry detection for reverse engineering. In: SMA 2001: Proceedings of the sixth ACM symposium on Solid modeling and applications, pp. 241–248. ACM Press, New York (2001)

    Chapter  Google Scholar 

  13. Simari, P., Kalogerakis, E., Singh, K.: Folding meshes: Hierarchical mesh segmentation based on planar symmetry. In: Proceedings of the Symposium on Geometry Processing (SGP 2006), pp. 111–119 (2006)

    Google Scholar 

  14. Mitra, N.J., Guibas, L., Pauly, M.: Symmetrization. ACM Transactions on Graphics 26, #63, 1–8 (2007)

    Article  Google Scholar 

  15. Besl, P.J., McKay, N.D.: A method for registration of 3-D shapes. IEEE Trans. PAMI 14(2), 239–256 (1992)

    Article  Google Scholar 

  16. Allen, B., Curless, B., Popovic̀, Z.: The space of human body shapes: reconstruction and parameterization from range scans. In: SIGGRAPH 2003: ACM SIGGRAPH 2003 Papers, pp. 587–594. ACM Press, New York (2003)

    Google Scholar 

  17. Sumner, R.W., Popović, J.: Deformation transfer for triangle meshes. In: SIGGRAPH 2004: ACM SIGGRAPH 2004 Papers, pp. 399–405. ACM Press, New York (2004)

    Google Scholar 

  18. Pauly, M., Mitra, N.J., Giesen, J., Gross, M., Guibas, L.: Example-based 3D scan completion. In: Symposium on Geometry Processing, pp. 23–32 (2005)

    Google Scholar 

  19. Garland, M., Heckbert, P.S.: Surface simplification using quadric error metrics. In: Computer Graphics (Siggraph 1997), pp. 209–216 (1997)

    Google Scholar 

  20. Ahn, M., Lee, S., Seidel, H.: Connectivity transformation for mesh metamorphosis. In: Eurographics/ACM SIGGRAPH symposium on Geometry processing, pp. 75–82 (2004)

    Google Scholar 

  21. Kraevoy, V., Sheffer, A.: Cross-parameterization and compatible remeshing of 3D models. ACM Transactions on Graphics (Proc. SIGGRAPH 2004) 23(3), 861–869 (2004)

    Article  Google Scholar 

  22. Alexa, M.: Merging polyhedral shapes with scattered features. The Visual Computer 16(1), 26–37 (2000)

    Article  MATH  Google Scholar 

  23. Lee, A., Dobkin, D., Sweldens, W., Schroeder, P.: Multiresolution mesh morphing. ACM Transactions on Graphics (Proc. SIGGRAPH 2001), 343–350 (1999)

    Google Scholar 

  24. Praun, E., Sweldens, W., Schroeder, P.: Consistent mesh parameterizations. ACM Transactions on Graphics (Proc. SIGGRAPH 2001), 179–184 (2001)

    Google Scholar 

  25. Hanke, S., Ottmann, T., Schuierer, S.: The edge-flipping distance of triangulations. Journal of Universal Computer Science 2(8), 570–579 (1996)

    MathSciNet  MATH  Google Scholar 

  26. Igarashi, T., Matsuoka, S., Tanaka, H.: Teddy: A sketching interface for 3D freeform design. In: Computer Graphics (Siggraph 1999), pp. 409–416. Addison Wesley Longman, Amsterdam (1999)

    Google Scholar 

  27. Cignoni, P., Rocchini, C., Scopigno, R.: Metro: measuring error on simplified surfaces. Computer Graphics Forum 17(2), 167–174 (1998)

    Article  Google Scholar 

  28. Yoshizawa, S., Belyaev, A., Seidel, H.: Smoothing by example: Mesh denoising by averaging with similarity-based weights. In: Shape Modeling International, pp. 38–44 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Golovinskiy, A., Podolak, J., Funkhouser, T. (2009). Symmetry-Aware Mesh Processing. In: Hancock, E.R., Martin, R.R., Sabin, M.A. (eds) Mathematics of Surfaces XIII. Mathematics of Surfaces 2009. Lecture Notes in Computer Science, vol 5654. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03596-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03596-8_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03595-1

  • Online ISBN: 978-3-642-03596-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics