Skip to main content

Compact Normal Form for Regular Languages as Xor Automata

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5642))

Abstract

The only presently known normal form for a regular language \({\mathcal{L}}\in{\mathcal{R}\mathrm{eg}}\) is its Minimal Deterministic Automaton \({\mathrm{MDA}}({\mathcal{L}})\). We show that a regular language is also characterized by a finite dimension \(\dim({\mathcal{L}})\), which is always smaller than the number \(|{\mathrm{MDA}}({\mathcal{L}})|\) of states, and often exponentially so. The dimension is also the minimal number of states of all Nondeterministic Xor Automaton (NXA) which accept the language. NXAs combine the advantages of deterministic automata (normal form, negation, minimization, equivalence of states, accessibility) and of nondeterministic ones (compactness, mirror language). We present an algorithmic construction of the Minimal Non Deterministic Xor Automaton \({\mathrm{MXA}}(\mathcal{L})\), in cubic time from any NXA for \({\mathcal{L}}\in{\mathcal{R}\mathrm{eg}}\). The MXA provides another normal form: \({\mathcal{L}}=\mathcal{L}^{\prime}\Leftrightarrow{\mathrm{MXA}}({\mathcal{L}})={\mathrm{MXA}}(\mathcal{L}^{\prime})\). Our algorithm establishes a missing connection between Brzozowski’s mirror-based minimization method for deterministic automata, and algorithms based on state-equivalence.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berstel, J., Reutenauer, C.: Rational Series and Their Languages. EATCS Monograph. Springer, Heidelberg (1988)

    Book  MATH  Google Scholar 

  2. Brzozowski, J.A.: Canonical regular expressions and minimal state graphs for definite events. In: Mathematical theory of Automata. MRI Symposia Series, vol. 12, pp. 529–561. Polytechnic Press, Polytechnic Institute of Brooklyn (1962)

    Google Scholar 

  3. Domaratzki, M., Kisman, D., Shallit, J.: On the number of distinct languages accepted by finite automata with n states. Journal of Automata, Languages and Combinatorics 7, 469–486 (2002)

    MathSciNet  MATH  Google Scholar 

  4. Fliess, M.: Matrices de Hankel. J. Math pures et appl. 53, 197–224 (1974)

    MathSciNet  MATH  Google Scholar 

  5. Huffman, D.A.: The synthesis of sequential switching circuits. The journal of symbolic logic 20, 69–70 (1955)

    Google Scholar 

  6. Jiang, T., Ravikumar, B.: Minimal NFA problems are hard. SIAM Journal on Computing 22(6), 1117–1141 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kameda, T., Weiner, P.: On the state minimalization of nondeterministic finite. Automata. IEEE Transactions on Computers 19(7), 617–627 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  8. Massey, J.: Shift register synthesis and BCH decoding. Trans. on Information Theory IT-15, 122–127 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  9. Mohri, M.: Weighted automata algorithms. In: Droste, M., Kuich, W., Vogler, H. (eds.) Handbook of weighted automata. Springer, Heidelberg (2009)

    Google Scholar 

  10. Moore, E.F.: Gedanken-experiments on sequential machines. The Journal of Symbolic Logic 23, 60 (1958)

    Google Scholar 

  11. Nerode, A.: Linear automaton transformations. Proceedings of the AMS 9, 541–544 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  12. Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM Journal 3, 114–125 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  13. Schützenberger, M.P.: On the definition of a family of automata. Information and Control 4, 245–270 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  14. van Zijl, L.: On binary xor-NFAs and succinct descriptions of regular languages. Theoretical Computer Science 328(1-2), 161–170 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. van Zijl, L., Muller, G.: Minimization of unary symmetric difference NFAs. In: Proc. of SAICSIT, pp. 125–134. ACM, New York (2004)

    Google Scholar 

  16. Watson, B.W.: A taxonomy of finite automata minimization algorithmes. Computing Science Note 93/44, Eindhoven University of Technology, The Netherlands (1993)

    Google Scholar 

  17. Watson, B.W.: Combining two algorithms by Brzozowski. In: Wood, D., Yu, S. (eds.) Proceedings of the Fifth International Conference on Implementing Automata, London, Canada (July 2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vuillemin, J., Gama, N. (2009). Compact Normal Form for Regular Languages as Xor Automata. In: Maneth, S. (eds) Implementation and Application of Automata. CIAA 2009. Lecture Notes in Computer Science, vol 5642. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02979-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02979-0_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02978-3

  • Online ISBN: 978-3-642-02979-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics