Skip to main content

Motion Planning of a Non-holonomic Vehicle in a Real Environment by Reinforcement Learning*

  • Conference paper
  • 2151 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5517))

Abstract

In this work, we present a new algorithm that obtains a minimum-time solution in real-time to the optimal motion planning of a non-holonomic vehicle. The new algorithm is based on the combination of Cell-Mapping and reinforcement learning techniques. While the algorithm is performed on the vehicle, it learns its kinematics and dynamics from received experience with no need to have a mathematical model available. The algorithm uses a transformation of the cell-to-cell transitions in order to reduce the time spent in the knowledge of the vehicle’s parameters. The presented results have been obtained executing the algorithm with the real vehicle and generating different trajectories to specific goals.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gómez, M., Martínez, T., Sánchez, S.: Optimal trajectory generation using the Simple Cell-Mapping method for wheeled mobile vehicles. In: Proc. of SAAEI, pp. 1–5. Universidad de Alcalá, Spain (2002)

    Google Scholar 

  2. Reeds, J.A., Shepp, R.A.: Optimal paths for a Car that Goes both Forwards and Backwards. Pacific J. Math. 145(2), 367–393 (1990)

    Article  MathSciNet  Google Scholar 

  3. Qin, B., Soh, Y.C., Xie, M., Wang, D.: Optimal trajectory generation for wheeled mobile robot. In: 5th International Conference on Computer Integrated Manufacturing, Singapore, March 28-30, 2000, vol. 1, pp. 434–444 (2000)

    Google Scholar 

  4. Barraquand, J., Latombe, J.C.: On nonholonomic mobile robots and optimal maneuvering. Revue d’Inteligence Artificielle 3(2), 77–103 (1989)

    Google Scholar 

  5. Hsu, S.: A discrete method of optimal control based upon the cell state space concept. J. Optim. Th. Appl. 46(4) (1985)

    Google Scholar 

  6. Papa, M., Tai, H.M., Shenoi, S.: Cell Mapping for Controller Design and Evaluation. IEEE Control Systems Magazine, 52–65 (April 1997)

    Google Scholar 

  7. Zufiria, P.J., Martínez-Marín, T.: Improved Optimal Control Methods based upon the Adjoining Cell Mapping Technique. J. Optimization Theory and Applications 118(3), 657–680 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gómez, M., Martínez, T., Sánchez, S., Meziat, D.: Optimal control applied to Wheeled Mobile Vehicles. In: Proceedings of 2007 IEEE International Symposium on Intelligent Signal Processing, October 2007, pp. 83–88. Alcalá de Henares, Madrid (2007)

    Google Scholar 

  9. Gómez, M., Martínez, T., Sánchez, S., Meziat, D.: Optimal control applied for Wheeled Mobile Vehicles based on Cell Mapping techniques. In: IEEE Intelligent Vehicles Symposium (IV 2008), June 4-6, 2008, Conference Proceedings Book (2008)

    Google Scholar 

  10. Munos, R., Moore, A.: Variable Resolution Discretization in Optimal Control. Machine Learning Journal 49, 291–323 (2002)

    Article  MATH  Google Scholar 

  11. CMUcam3: Open Source Programmable Embedded Color Vision Platform, http://www.cmucam.org

  12. Sutton, R.S., Barto, A.: Reinforcement Learning: An introduction. MIT Press, Cambridge (1998)

    Google Scholar 

  13. Watkins Christopher, J.C.H.: Learning from Delayed Rewards. PhD thesis. Cambridge University, Cambridge (1989)

    Google Scholar 

  14. Kaebling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Artificial Intelligence Research 4, 237–285 (1996)

    Google Scholar 

  15. Bryson, Ho: Applied optimal control: Optimization, estimation and control, book, p. 481. Hemisphere Pub. Corp. (1975) ISBN 0470114819

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gómez, M., Gayarre, L., Martínez-Marín, T., Sánchez, S., Meziat, D. (2009). Motion Planning of a Non-holonomic Vehicle in a Real Environment by Reinforcement Learning* . In: Cabestany, J., Sandoval, F., Prieto, A., Corchado, J.M. (eds) Bio-Inspired Systems: Computational and Ambient Intelligence. IWANN 2009. Lecture Notes in Computer Science, vol 5517. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02478-8_102

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02478-8_102

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02477-1

  • Online ISBN: 978-3-642-02478-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics