Skip to main content

MOGA Design of Neural Network Predictors of Inside Temperature in Public Buildings

  • Chapter
Soft Computing Based Modeling in Intelligent Systems

Part of the book series: Studies in Computational Intelligence ((SCI,volume 196))

Abstract

The use of artificial neural networks in various applications related with energy management in buildings has been increasing significantly over the recent years. In this chapter, the design of inside air temperature predictive neural network models, to be used for predictive thermal comfort control, is discussed. The design is based on the joint use of multi-objective genetic (MOGA) algorithms, for selecting the network structure and the network inputs, and a derivative algorithm, for parameter estimation. Climate and environmental data from a secondary school located in the south of Portugal, collected by a remote data acquisition system, are used to generate the models. By using a sliding window adaptive methodology, the good results obtained off-line are extended throughout the whole year.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Argiriou, A., Bellas-Velidis, I., Balaras, C.: Development of a neural network heating controller for solar buildings. Neural Networks 13, 811–820 (2000)

    Article  Google Scholar 

  2. Argiriou, A., Bellas-Velidis, I., Kummert, M., Andre, P.: A neural network controller for hydronic heating systems of solar buildings. Neural Networks 17, 427–440 (2004)

    Article  MATH  Google Scholar 

  3. Chu, C.M., Jong, T.L., Huang, Y.W.: Thermal comfort control on multi-room fan coil unit system using LEE-based fuzzy logic. Energy Conversion and Management 46, 1579–1593 (2005)

    Article  Google Scholar 

  4. Alcalá, R., Casillas, J., Cordón, O., González, A., Herrera, F.: A genetic rule weighting and selection process for fuzzy control of heating, ventilating and air conditioning systems. Engineering Applications of Artificial Intelligence 18, 279–296 (2005)

    Article  Google Scholar 

  5. Ben-Nakhi, A.E., Mahmoud, M.A.: Energy conservation in buildings through efficient A/C control using neural networks. Applied Energy 73, 5–23 (2002)

    Article  Google Scholar 

  6. Mahmoud, M.A., Ben-Nakhi, A.E.: Architecture and performance of neural networks for efficient A/C control in buildings. Energy Conversion and Management 44, 3207–3226 (2003)

    Article  Google Scholar 

  7. Ben-Nakhi, A.E., Mahmoud, M.A.: Cooling load prediction for buildings using general regression neural networks. Energy Conversion and Management 45, 2127–2141 (2004)

    Article  Google Scholar 

  8. Yang, I., Kim, K.: Prediction of the time of room air temperature descending for heating systems in buildings. Building and Environment 39, 19–29 (2004)

    Article  Google Scholar 

  9. Karatasou, S., Santamouris, M., Geros, V.: Modeling and predicting building’s energy use with artificial neural networks: Methods and results. Energy and Buildings 38(8), 949–958 (2006)

    Article  Google Scholar 

  10. Yang, J., Rivard, H., Zmeureanu, R.: On-line building energy prediction using adaptive artificial neural networks. Energy and Buildings 37(12), 1250–1259 (2005)

    Article  Google Scholar 

  11. Fanger, P.O.: Thermal comfort: analysis and applications in environmental engineering. McGraw-Hill, New York (1972)

    Google Scholar 

  12. Yang, K.H., Su, C.H.: An approach to building energy savings using the PMV index. Building Environment 32(1), 25–30 (1997)

    Article  Google Scholar 

  13. ASHRAE-55, Thermal environmental conditions for human occupancy. American Society of Heating. Refrigerating and Air-conditioning Engineers Inc. (1992)

    Google Scholar 

  14. International Standard ISO 7730 Moderate thermal environments-estimation of the PMV and PPD indices and specification of the conditions for thermal comfort, Geneva (1987)

    Google Scholar 

  15. Atthajariyakul, S., Leephakpreeda, L.: Neural computing thermal comfort index HVAC systems, Energy Conversion and Management. Energy Conversion and management 46(19), 15–16 (2005)

    Google Scholar 

  16. Crispim, E.M., Martins, M.D., Ruano, A.E., Fonseca, C.M.: Remote Data Acquisition System of Environmental Data. In: Proceedings of the 6th Portuguese Conference of Automatic Control (Controlo 2004), University of Algarve, Faro, Portugal (2004)

    Google Scholar 

  17. Levenberg, K.: A method for the solution of certain problems in least squares. Quart. Apl. Math. 2, 164–168 (1944)

    MATH  MathSciNet  Google Scholar 

  18. Marquardt, D.: An algorithm for least-squares estimation of nonlinear parameters. Siam J. Appl. Math. 11, 431–441 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  19. Chinrungrueng, C., Séquin, C.: Optimal adaptive k-means algorithm with dynamic adjustment of learning rate. IEEE Transactions on Neural Networks 1(6), 157–169 (1995)

    Article  Google Scholar 

  20. Haykin, S.: Learning strategies in Neural Networks: A comprehensive Foundation, 2nd edn., ch. 5, p. 299. Prentice Hall, Englewood Cliffs (1998)

    Google Scholar 

  21. Ruano, A.E., Ferreira, P.M., Fonseca, C.M.: An overview of nonlinear identification and control with neural networks. In: Ruano, A.E. (ed.) Intelligent Control using Intelligent Computational Techniques. IEE Control Series (2005) ISBN 0 86341 489 3

    Google Scholar 

  22. Fonseca, C.M., Fleming, P.J.: Multiobjective optimization and multiple constraint handling with evolutionary algorithms: A unified formulation. IEEE Transactions on Systems, Man and Cybernetics-Part A: System and Humans 1(28), 26–37 (1998)

    Article  Google Scholar 

  23. Billings, S., Zhu, Q.: Nonlinear model validation using correlation tests, Dept. of Automatic Control and Systems Engineering, University of Sheffield, Sheffield S14DU,UK, Research Report 463 (1993)

    Google Scholar 

  24. Ruano, A.E., Crispim, E.M., Conceicao, E.Z.E., Lucio, M.M.J.R.: Prediction of building’s temperature using neural networks models. Energy and Buildings 6(38), 682–694 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ruano, A.E., Crispim, E.M., Frazão, P.M. (2009). MOGA Design of Neural Network Predictors of Inside Temperature in Public Buildings. In: Balas, V.E., Fodor, J., Várkonyi-Kóczy, A.R. (eds) Soft Computing Based Modeling in Intelligent Systems. Studies in Computational Intelligence, vol 196. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00448-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00448-3_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00447-6

  • Online ISBN: 978-3-642-00448-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics