Skip to main content

Sampling of the Diurnal Tide of Temperature Using Formosat-3/COSMIC Data

  • Chapter
  • First Online:

Abstact

The Formosat-3/COSMIC satellite constellation, performing radio occultation measurements, allows for an adequate measurement density in space and time to determine the temperature diurnal tide typical for one month, i.e., on a monthly basis. In this initial study on the topic we investigated the diurnal amplitude and phase between 4 km and 35 km altitude in different geographical regions in July 2007. The tropical diurnal tide shows a distinctive downward phase progression. The corresponding amplitude is increasing towards higher altitudes but it always remains smaller than 0.5 K up to an altitude of 35 km. Natural temperature variability within large latitudinal domains seems to interfere with the diurnal tide, which complicates the interpretation of our extratropical results. We found maximum temperature amplitude within a day in the afternoon at high latitudes with an increase in amplitude with altitude. The tide is more pronounced in the winter hemisphere.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alexander SP, Tsuda T (2008) Observations of the diurnal tide during seven intensive radiosonde campaigns in Australia and Indonesia. J Geophys Res 113(D04109), doi:10.1029/2007JD008717

    Google Scholar 

  • Anthes RA, Bernhardt PA, Chen Y, Cucurull L, Dymond KF, Ector D, Healy SB, Ho SP, Hunt DC, Kuo YH, Liu H, Manning K, McCormick C, Meehan TK, Randel WJ, Rocken C, Schreiner WS, Sokolovskiy SV, Syndergaard S, Thompson DC, Trenberth KE, Wee TK, Yen NL, Zeng Z (2008) The COSMIC/FORMOSAT-3 mission: Early results. Bull Am Met Soc 89(3):313–333, doi:10.1175/BAMS-89-3-313

    Google Scholar 

  • Boain RJ (2005) A-B-Cs of Sun-synchronous orbit mission design (AAS 04-108). In: Coffey SL, Mazzoleni AP, Luu KK, Glover RA (eds) Spaceflight Mechanics 2004 – Part I, Univelt, Inc, San Diego, CA

    Google Scholar 

  • Chapman S, Lindzen RS (1970) Atmospheric Tides. D. Reidel, Norwell, Mass

    Google Scholar 

  • Easterling DR, Gleason B, Vose RS, Stouffer RJ (2006) A comparison of model produced maximum and minimum temperature trends with observed trends for the 20th and 21st centuries. Paper presented at 18th Conference on Climate Variability and Change, Session 5: Climate Modeling: Studies of Climate Change on 01.02.2006, Am. Meteorol. Soc., Atlanta, GA, extended abstract

    Google Scholar 

  • Foelsche U, Borsche M, Steiner AK, Gobiet A, Pirscher B, Kirchengast G, Wickert J, Schmidt T (2008) Observing upper troposphere-lower stratosphere climate with radio occultation data from the CHAMP satellite. Clim Dyn 31:49–65, doi:10.1007/s00382-007-0337-7

    Google Scholar 

  • Foelsche U, Pirscher B, Borsche M, Kirchengast G, Wickert J (2009) Assessing the climate monitoring utility of radio occultation data: From CHAMP to FORMOSAT-3/COSMIC. Terr Atmos Oceanic Sci 20(1):155–170, doi:10.3319/TAO.2008.01.14.01(F3C)

    Google Scholar 

  • Hoffmann-Wellenhof B, Lichtenegger H, Collins J (1997) GPS Theory and Practice. Springer, Wien New York

    Google Scholar 

  • Karl TR, Hassol J, Miller CD, Murray WL (2006) Temperature Trends in the Lower Atmosphere: Steps for Understanding and Reconciling Differences. A Report by the Climate Change Science Program and the Subcommittee on Global Change Research, Washington, DC

    Google Scholar 

  • Kursinski ER, Hajj GA, Schofield JT, Linfield RP, Hardy KR (1997) Observing Earth’s atmosphere with radio occultation measurements using the Global Positioning System. J Geophys Res 102:23429–23465

    Article  Google Scholar 

  • Larson WJ, Wertz JR (eds) (1997) Space Mission Analysis and Design. Space Technology Library, Microcosm, Inc. and Kluwer Academic Publishers, USA, The Netherlands

    Google Scholar 

  • Pirscher B, Foelsche U, Lackner BC, Kirchengast G (2007) Local time influence in single-satellite radio occultation climatologies from sun-synchronous and nun-sun-synchronous satellites. J Geophys Res 112(D11119), doi:10.1029/2004JD005526

    Google Scholar 

  • Revathy K, Prabhakaran Nayar SR, Krishna Murthy BV (2001) Diurnal variation of tropospheric temperature at a tropical station. Ann Geophys 19:1001–1005

    Article  Google Scholar 

  • Riggin DM, Kudeki E, Feng Z, Sarango MF, Lieberman RS (2002) Jicamarca radar observations of the diurnal and semidiurnal tide in the troposphere and lower stratosphere. J Geophys Res 107(D8):4062, doi:10.1029/2001JD001216

    Google Scholar 

  • Rocken C, Kuo YH, Schreiner W, Hunt D, Sokolovskiy S, McCormick C (2000) COSMIC system description. Terr Atmos Ocean Sci 11:21–52

    Google Scholar 

  • Seidel DJ, Free M, Wang J (2005) Diurnal cycle of upper-air temperature estimated from radiosondes. J Geophys Res 110(D09102), doi:10.1029/2004JD005526

    Google Scholar 

  • Steiner AK, Kirchengast G, Foelsche U, Kornblueh L, Manzini E, Bengtsson L (2001) GNSS occultation sounding for climate monitoring. Phys Chem Earth 26(3):113–124, D09102

    Article  Google Scholar 

  • Trenberth KE, Jones PD, Ambenje P, Bojariu R, Easterling D, Tank AK, Parker D, Rahimzadeh F, Renwick JA, Rusticucci M, Soden B, Zhai P (2007) Observations: Surface and atmospheric climate change. In: Solomon S, et al. (eds) Climate Change 2007: The Physical Science Basis., Cambridge Univ Press, Cambridge, UK and New York, NY, USA, pp 235–336

    Google Scholar 

  • Tsuda T, Kato S (1989) Diurnal non-migrating tides excited by a differential heating due to land-sea distribution. Soc Jpn 67:43–54

    Google Scholar 

  • Vose RS, Easterling DR, Gleason B (2005) Maximum and minimum temperature trends for the globe: An update through 2004. J Geophys Res 32(L23822), doi:10.1029/2005GL024379

    Google Scholar 

  • Zeng Z, Randel W, Sokolovskiy S, Deser C, Kuo YH, Hagan M, Du J, Ward W (2008) Detection of migrating diurnal tide in the tropical upper troposphere and lower stratosphere using the Challenging Minisatellite Payload radio occultation data. J Geophys Res 113(D03102), doi:10.1029/2007JD008725

    Google Scholar 

Download references

Acknowledgements

We thank CelesTrak (Colorado Springs, CO, USA) for the provision of Formosat-3/COSMIC Two-Line Element-files, UCAR/CDAAC (Boulder, CO, USA) for providing Formosat-3/COSMIC data and ECMWF (Reading, UK) for analysis data. The work was carried out with financial support from the Austrian Science Fund (FWF) under research grant P18837 (CLIMROCC). UF received financial support from the Max Kade Foundation (New York, NY, USA) and from UCAR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Pirscher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pirscher, B., Foelsche, U., Borsche, M., Kirchengast, G. (2009). Sampling of the Diurnal Tide of Temperature Using Formosat-3/COSMIC Data. In: Steiner, A., Pirscher, B., Foelsche, U., Kirchengast, G. (eds) New Horizons in Occultation Research. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00321-9_11

Download citation

Publish with us

Policies and ethics