Skip to main content

Adenosine Receptors and the Kidney

  • Chapter
  • First Online:
Adenosine Receptors in Health and Disease

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 193))

Abstract

The autacoid, adenosine, is present in the normoxic kidney and generated in the cytosol as well as at extracellular sites. The rate of adenosine formation is enhanced when the rate of ATP hydrolysis prevails over the rate of ATP synthesis during increased tubular transport work or during oxygen deficiency. Extracellular adenosine acts on adenosine receptor subtypes (A1, A2A, A2B, and A3) in the cell membranes to affect vascular and tubular functions. Adenosine lowers glomerular filtration rate by constricting afferent arterioles, especially in superficial nephrons, and thus lowers the salt load and transport work of the kidney consistent with the concept of metabolic control of organ function. In contrast, it leads to vasodilation in the deep cortex and the semihypoxic medulla, and exerts differential effects on NaCl transport along the tubular and collecting duct system. These vascular and tubular effects point to a prominent role of adenosine and its receptors in the intrarenal metabolic regulation of kidney function, and, together with its role in inflammatory processes, form the basis for potential therapeutic approaches in radiocontrast media-induced acute renal failure, ischemia reperfusion injury, and in patients with cardiorenal failure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 389.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 499.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AA:

Afferent arteriole

ADO:

Adenosine

ARF:

Acute renal failure

AXAR:

Adenosine receptor subtype x

B:

Bowman’s capsule

BG9719:

1,3-Dipropyl-8-[2-(5,6-epoxynorbornyl)] xanthine

BG9928:

1,3-Dipropyl-8-[1-(4-propionate)-bicyclo-[2,2,2]octyl)]xanthine

BM:

Basement membrane

BS:

Bowman’s space

cAMP:

Cyclic adenosine monophosphate

CD39:

Ecto-nucleoside triphosphate diphosphohydrolase-1

CD73:

Ecto-5-nucleotidase

CGS21680:

2-[p-(2-Carboxyethyl)phenethylamino]-5-N-ethylcarboxamido adenosine

CVT-124:

S-Enantiomer of 1,3-dipropyl-8-[2-(5,6-epoxynorbornyl)] 1xanthine

DMPX:

3,7-Dimethyl-1-propargylxanthine

DPCPX:

1,3-Dipropyl-8-cyclopentylxanthine

DPSPX:

1,3-Dipropyl-8-sulfophenylxanthine

DWH 146e:

4-(3-(6-Amino-9-(5-ethylcarbamoyl-3,4-dihydroxytetrahydrofuran-2-yl)-9H-purin-2-yl)prop-2-ynyl)cyclohexanecarboxylic acid methyl ester

EA:

Efferent arteriole

EGM:

Extraglomerular mesangium

ENTPDase:

Ectonucleoside triphosphate diphosphohydrolase

FK-453:

(+)-(R)-[(E)-3-(2-Phenylpyrazolo[1,5-a]pyridin-3-yl)acryloyl]-2-piperidine ethanol

FK-838:

6-Oxo-3-(2-phenylpyrazolo[1,5-a]pyridin-3-yl)-1(6H)-pyridazinebutanoic ‘acid

GFR:

Glomerular filtration rate

HSP27:

Heat-shock protein 27

IMCD:

Inner medullary collecting duct

KW-3902:

8-(Noradamantan-3-yl)-1,3 dipropylxanthine

MBF:

Medullary blood flow

MC:

Mesangium cells

mTAL:

Medullary thick ascending limb

NHE:

Na+ − H+ exchanger

NKCC2:

Na+ − K+ − 2Cl- cotransporter

NO:

Nitric oxide

NY2HA:

New York Heart Association

pO2 :

Partial oxygen pressure

PT:

Proximal tubule

SNGFR:

Single nephron glomerular filtration rate

TAL:

Thick ascending limb

TGF:

Tubuloglomerular feedback

TNa :

Transport of sodium

VSMC:

Vascular smooth muscle cells

References

  • Abizaid AS, Clark CE, Mintz GS, Dosa S, Popma JJ, Pichard AD, Satler LF, Harvey M, Kent KM, Leon MB (1999) Effects of dopamine and aminophylline on contrast-induced acute renal failure after coronary angioplasty in patients with preexisting renal insufficiency. Am J Cardiol 83:260–263, A5

    Google Scholar 

  • Agmon Y, Dinour D, Brezis M (1993) Disparate effects of adenosine A1- and A2-receptor agonists on intrarenal blood flow. Am J Physiol 265:F802–F806

    CAS  PubMed  Google Scholar 

  • Arend LJ, Thompson CI, Spielman WS (1985) Dipyridamole decreases glomerular filtration in the sodium-depleted dog. Evidence for mediation by intrarenal adenosine. Circ Res 56:242–251

    CAS  Google Scholar 

  • Arend LJ, Bakris GL, Burnett JC Jr, Megerian C, Spielman WS (1987) Role for intrarenal adenosine in the renal hemodynamic response to contrast media. J Lab Clin Med 110:406–411

    CAS  PubMed  Google Scholar 

  • Bagshaw SM, Ghali WA (2005) Theophylline for prevention of contrast-induced nephropathy: a systematic review and meta-analysis. Arch Intern Med 165:1087–1093

    Article  PubMed  Google Scholar 

  • Bakr AF (2005) Prophylactic theophylline to prevent renal dysfunction in newborns exposed to perinatal asphyxia: a study in a developing country. Pediatr Nephrol 20:1249–1252

    Article  PubMed  Google Scholar 

  • Balakrishnan VS, Coles GA, Williams JD (1993) A potential role for endogenous adenosine in control of human glomerular and tubular function. Am J Physiol 265:F504–F510

    CAS  PubMed  Google Scholar 

  • Balakrishnan VS, Coles GA, Williams JD (1996) Effects of intravenous adenosine on renal function in healthy human subjects. Am J Physiol 271:F374–F381

    CAS  PubMed  Google Scholar 

  • Barrett RJ, Droppleman DA (1993) Interactions of adenosine A1 receptor-mediated renal vasoconstriction with endogenous nitric oxide and ANG II. Am J Physiol 265:F651–F659

    CAS  PubMed  Google Scholar 

  • Baudouin-Legros M, Badou A, Paulais M, Hammet M, Teulon J (1995) Hypertonic NaCl enhances adenosine release and hormonal cAMP production in mouse thick ascending limb. Am J Physiol 269:F103–F109

    CAS  PubMed  Google Scholar 

  • Beach RE, Good DW (1992) Effects of adenosine on ion transport in rat medullary thick ascending limb. Am J Physiol 263:F482–F487

    CAS  PubMed  Google Scholar 

  • Beach RE, Watts BA, Good DW, Benedict CR, DuBose TD Jr (1991) Effects of graded oxygen tension on adenosine release by renal medullary and thick ascending limb suspensions. Kidney Int 39:836–842

    Article  CAS  PubMed  Google Scholar 

  • Bell PD, Lapointe JY, Sabirov R, Hayashi S, Peti-Peterdi J, Manabe K, Kovacs G, Okada Y (2003) Macula densa cell signaling involves ATP release through a maxi anion channel. Proc Natl Acad Sci USA 100:4322–4327

    Article  CAS  PubMed  Google Scholar 

  • Benoehr P, Krueth P, Bokemeyer C, Grenz A, Osswald H, Hartmann JT (2005) Nephroprotection by theophylline in patients with cisplatin chemotherapy: a randomized, single-blinded, placebo-controlled trial. J Am Soc Nephrol 16:452–458

    Article  CAS  PubMed  Google Scholar 

  • Bidani AK, Churchill PC (1983) Aminophylline ameliorates glycerol-induced acute renal failure in rats. Can J Physiol Pharmacol 61:567–571

    CAS  PubMed  Google Scholar 

  • Bidani AK, Churchill PC, Packer W (1987) Theophylline-induced protection in myoglobinuric acute renal failure: further characterization. Can J Physiol Pharmacol 65:42–45

    CAS  PubMed  Google Scholar 

  • Bowmer CJ, Collis MG, Yates MS (1986) Effect of the adenosine antagonist 8-phenyltheophylline on glycerol-induced acute renal failure in the rat. Br J Pharmacol 88:205–212

    CAS  PubMed  Google Scholar 

  • Brezis M, Rosen S (1995) Hypoxia of the renal medulla: its implications for disease. N Engl J Med 332:647–655

    Article  CAS  PubMed  Google Scholar 

  • Brown R, Ollerstam A, Johansson B, Skott O, Gebre-Medhin S, Fredholm B, Persson AE (2001) Abolished tubuloglomerular feedback and increased plasma renin in adenosine A1 receptor-deficient mice. Am J Physiol Regul Integr Comp Physiol 281:R1362–R1367

    CAS  PubMed  Google Scholar 

  • Burnatowska-Hledin MA, Spielman WS (1991) Effects of adenosine on cAMP production and cytosolic Ca2 + in cultured rabbit medullary thick limb cells. Am J Physiol 260:C143–C150

    CAS  PubMed  Google Scholar 

  • Cai H, Batuman V, Puschett DB, Puschett JB (1994) Effect of KW-3902, a novel adenosine A1 receptor antagonist, on sodium-dependent phosphate and glucose transport by the rat renal proximal tubular cell. Life Sci 55:839–845

    Article  CAS  PubMed  Google Scholar 

  • Cai H, Puschett DB, Guan S, Batuman V, Puschett JB (1995) Phosphate transport inhibition by KW-3902, an adenosine A1 receptor antagonist, is mediated by cyclic adenosine monophosphate. Am J Kidney Dis 26:825–830

    Article  CAS  PubMed  Google Scholar 

  • Castrop H, Huang Y, Hashimoto S, Mizel D, Hansen P, Theilig F, Bachmann S, Deng C, Briggs J, Schnermann J (2004) Impairment of tubuloglomerular feedback regulation of GFR in ecto-5-nucleotidase/CD73-deficient mice. J Clin Invest 114:634–642

    CAS  PubMed  Google Scholar 

  • Churchill PC, Bidani A (1987) Renal effects of selective adenosine receptor agonists in anesthetized rats. Am J Physiol 252:F299–F303

    CAS  PubMed  Google Scholar 

  • Churchill PC, Churchill MC (1985) A1 and A2 adenosine receptor activation inhibits and stimulates renin secretion of rat renal cortical slices. J Pharmacol Exp Ther 232:589–594

    CAS  PubMed  Google Scholar 

  • Cohen MV, Downey JM (2008) Adenosine: trigger and mediator of cardioprotection. Basic Res Cardiol 103:203–215

    Article  CAS  PubMed  Google Scholar 

  • Day YJ, Huang L, McDuffie MJ, Rosin DL, Ye H, Chen JF, Schwarzschild MA, Fink JS, Linden J, Okusa MD (2003) Renal protection from ischemia mediated by A2A adenosine receptors on bone marrow-derived cells. J Clin Invest 112:883–891

    CAS  PubMed  Google Scholar 

  • Dietrich MS, Steinhausen M (1993) Differential reactivity of cortical and juxtaglomerullary glomeruli to adenosine-1 and adenosine-2 receptor stimulation and angiotensin converting-enzyme inhibition. Microvasc Res 45:122–133

    Article  CAS  PubMed  Google Scholar 

  • Dietrich MS, Endlich K, Parekh N, Steinhausen M (1991) Interaction between adenosine and angiotensin II in renal microcirculation. Microvasc Res 41:275–288

    Article  CAS  PubMed  Google Scholar 

  • Dinour D, Brezis M (1991) Effects of adenosine on intrarenal oxygenation. Am J Physiol 261:F787–F791

    CAS  PubMed  Google Scholar 

  • Di Sole F, Cerull R, Petzke S, Casavola V, Burckhardt G, Helmle-Kolb C (2003) Bimodal acute effects of A1 adenosine receptor activation on Na+/H+ exchanger 3 in opossum kidney cells. J Am Soc Nephrol 14:1720–1730

    Article  PubMed  CAS  Google Scholar 

  • Dittrich HC, Gupta DK, Hack TC, Dowling T, Callahan J, Thomson S (2007) The effect of KW-3902, an adenosine A1 receptor antagonist, on renal function and renal plasma flow in ambulatory patients with heart failure and renal impairment. J Card Fail 13:609–617

    Article  CAS  PubMed  Google Scholar 

  • Dries DL, Exner DV, Domanski MJ, Greenberg B, Stevenson LW (2000) The prognostic implications of renal insufficiency in asymptomatic and symptomatic patients with left ventricular systolic dysfunction. J Am Coll Cardiol 35:681–689

    Article  CAS  PubMed  Google Scholar 

  • Edlund A, Sollevi A (1993) Renal effects of i.v. adenosine infusion in humans. Clin Physiol 13:361–371

    Article  CAS  PubMed  Google Scholar 

  • Edlund A, Ohlsen H, Sollevi A (1994) Renal effects of local infusion of adenosine in man. Clin Sci Colch 87:143–149

    CAS  PubMed  Google Scholar 

  • Erley CM, Duda SH, Schlepckow S, Koehler J, Huppert PE, Strohmaier WL, Bohle A, Risler T, Osswald H (1994) Adenosine antagonist theophylline prevents the reduction of glomerular filtration rate after contrast media application. Kidney Int 45:1425–1431

    Article  CAS  PubMed  Google Scholar 

  • Erley CM, Heyne N, Burgert K, Langanke J, Risler T, Osswald H (1997) Prevention of radiocontrast-induced nephropathy by adenosine antagonists in rats with chronic nitric oxide deficiency. J Am Soc Nephrol 8:1125–1132

    CAS  PubMed  Google Scholar 

  • Erley CM, Duda SH, Rehfuss D, Scholtes B, Bock J, Muller C, Osswald H, Risler T (1999) Prevention of radiocontrast-media-induced nephropathy in patients with pre-existing renal insufficiency by hydration in combination with the adenosine antagonist theophylline. Nephrol Dial Transplant 14:1146–1149

    Article  CAS  PubMed  Google Scholar 

  • Ezeamuzie CI (2001) Involvement of A(3) receptors in the potentiation by adenosine of the inhibitory effect of theophylline on human eosinophil degranulation: possible novel mechanism of the antiinflammatory action of theophylline. Biochem Pharmacol 61:1551–1559

    Article  CAS  PubMed  Google Scholar 

  • Forman DE, Butler J, Wang Y, Abraham WT, O’Connor CM, Gottlieb SS, Loh E, Massie BM, Rich MW, Stevenson LW, Young JB, Krumholz HM (2004) Incidence, predictors at admission, and impact of worsening renal function among patients hospitalized with heart failure. J Am Coll Cardiol 43:61–67

    Article  PubMed  Google Scholar 

  • Franco M, Bell PD, Navar LG (1989) Effect of adenosine A1 analogue on tubuloglomerular feedback mechanism. Am J Physiol 257:F231–F236

    CAS  PubMed  Google Scholar 

  • Funaya H, Kitakaze M, Node K, Minamino T, Komamura K, Hori M (1997) Plasma adenosine levels increase in patients with chronic heart failure. Circulation 95:1363–1365

    CAS  PubMed  Google Scholar 

  • Gabriels G, Endlich K, Rahn KH, Schlatter E, Steinhausen M (2000) In vivo effects of diadenosine polyphosphates on rat renal microcirculation. Kidney Int 57:2476–2484

    Article  CAS  PubMed  Google Scholar 

  • Garcia GE, Truong LD, Li P, Zhang P, Du J, Chen JF, Feng L (2008) Adenosine A2A receptor activation and macrophage-mediated experimental glomerulonephritis. FASEB J 22:445–454

    Article  CAS  PubMed  Google Scholar 

  • Gerkens JF, Heidemann HT, Jackson EK, Branch RA (1983) Effect of aminophylline on amphotericin B nephrotoxicity in the dog. J Pharmacol Exp Ther 224:609–613

    CAS  PubMed  Google Scholar 

  • Givertz MM, Massie BM, Fields TK, Pearson LL, Dittrich HC (2007) The effects of KW-3902, an adenosine A1-receptor antagonist on diuresis and renal function in patients with acute decompensated heart failure and renal impairment or diuretic resistance. J Am Coll Cardiol 50:1551–1560

    Article  CAS  PubMed  Google Scholar 

  • Gottlieb SS, Skettino SL, Wolff A, Beckman E, Fisher ML, Freudenberger R, Gladwell T, Marshall J, Cines M, Bennett D, Liittschwager EB (2000) Effects of BG9719 (CVT-124), an A1-adenosine receptor antagonist, and furosemide on glomerular filtration rate and natriuresis in patients with congestive heart failure. J Am Coll Cardiol 35:56–59

    Article  CAS  PubMed  Google Scholar 

  • Gottlieb SS, Brater DC, Thomas I, Havranek E, Bourge R, Goldman S, Dyer F, Gomez M, Bennett D, Ticho B, Beckman E, Abraham WT (2002) BG9719 (CVT-124), an A1 adenosine receptor antagonist, protects against the decline in renal function observed with diuretic therapy. Circulation 105:1348–1353

    Article  CAS  PubMed  Google Scholar 

  • Gouyon JB, Guignard JP (1988) Theophylline prevents the hypoxemia-induced renal hemodynamic changes in rabbits. Kidney Int 33:1078–1083

    Article  CAS  PubMed  Google Scholar 

  • Greenberg B, Thomas I, Banish D, Goldman S, Havranek E, Massie BM, Zhu Y, Ticho B, Abraham WT (2007) Effects of multiple oral doses of an A1 adenosine antagonist, BG9928, in patients with heart failure: results of a placebo-controlled, dose-escalation study. J Am Coll Cardiol 50:600–606

    Article  CAS  PubMed  Google Scholar 

  • Grenz A, Zhang H, Eckle T, Mittelbronn M, Wehrmann M, Kohle C, Kloor D, Thompson LF, Osswald H, Eltzschig HK (2007a) Protective role of ecto-5-nucleotidase (CD73) in renal ischemia. J Am Soc Nephrol 18:833–845

    Article  CAS  PubMed  Google Scholar 

  • Grenz A, Zhang H, Hermes M, Eckle T, Klingel K, Huang DY, Muller CE, Robson SC, Osswald H, Eltzschig HK (2007b) Contribution of E-NTPDase1 (CD39) to renal protection from ischemia-reperfusion injury. FASEB J 21:2863–2873

    Article  CAS  PubMed  Google Scholar 

  • Grenz A, Osswald H, Eckle T, Yang D, Zhang H, Tran ZV, Klingel K, Ravid K, Eltzschig HK (2008) The reno-vascular A2B adenosine receptor protects the kidney from ischemia. PLoS Med 5:e137

    Article  PubMed  CAS  Google Scholar 

  • Gueler F, Gwinner W, Schwarz A, Haller H (2004) Long-term effects of acute ischemia and reperfusion injury. Kidney Int 66:523–527

    Article  PubMed  Google Scholar 

  • Haas JA, Osswald H (1981) Adenosine induced fall in glomerular capillary pressure. Effect of ureteral obstruction and aortic constriction in the Munich–Wistar rat kidney. Naunyn–Schmiedeberg’s Arch Pharmacol 317:86–89

    Article  CAS  Google Scholar 

  • Hansen PB, Hashimoto S, Briggs J, Schnermann J (2003a) Attenuated renovascular constrictor responses to angiotensin II in adenosine 1 receptor knockout mice. Am J Physiol Regul Integr Comp Physiol 285:R44–R49

    CAS  PubMed  Google Scholar 

  • Hansen PB, Castrop H, Briggs J, Schnermann J (2003b) Adenosine induces vasoconstriction through Gi-dependent activation of phospholipase C in isolated perfused afferent arterioles of mice. J Am Soc Nephrol 14:2457–2465

    Article  CAS  PubMed  Google Scholar 

  • Hansen PB, Hashimoto S, Oppermann M, Huang Y, Briggs JP, Schnermann J (2005) Vasoconstrictor and vasodilator effects of adenosine in the mouse kidney due to preferential activation of A1 or A2 adenosine receptors. J Pharmacol Exp Ther 315:1150–1157

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto S, Huang Y, Briggs J, Schnermann J (2006) Reduced autoregulatory effectiveness in adenosine 1 receptor-deficient mice. Am J Physiol Renal Physiol 290:F888–F891

    Article  CAS  PubMed  Google Scholar 

  • Heidemann HT, Gerkens JF, Jackson EK, Branch RA (1983) Effect of aminophylline on renal vasoconstriction produced by amphotericin B in the rat. Naunyn–Schmiedeberg’s Arch Pharmacol 324:148–152

    Article  CAS  Google Scholar 

  • Heidemann HT, Muller S, Mertins L, Stepan G, Hoffmann K, Ohnhaus EE (1989) Effect of aminophylline on cisplatin nephrotoxicity in the rat. Br J Pharmacol 97:313–318

    CAS  PubMed  Google Scholar 

  • Helmlinger J (1979) Das experimentell erzeugte akute ischämische Nierenversagen bei der Ratte. Dissertation, University of Aachen, Germany

    Google Scholar 

  • Hillege HL, Girbes AR, de Kam PJ, Boomsma F, de Zeeuw D, Charlesworth A, Hampton JR, van Veldhuisen DJ (2000) Renal function, neurohormonal activation, and survival in patients with chronic heart failure. Circulation 102:203–210

    CAS  PubMed  Google Scholar 

  • Hoenderop JG, Hartog A, Willems PH, Bindels RJ (1998) Adenosine-stimulated Ca2 + reabsorption is mediated by apical A1 receptors in rabbit cortical collecting system. Am J Physiol 274:F736–F743

    CAS  PubMed  Google Scholar 

  • Hoenderop JGJ, De Pont JJHH, Bindels RJM, Willems PHGM (1999) Hormone-stimulated Ca2 + reabsorption in rabbit kidney cortical collecting system is cAMP-independent and involves a phorbol ester-insensitive PKC isotype. Kidney Int 55:225–233

    Article  CAS  PubMed  Google Scholar 

  • Holz FG, Steinhausen M (1987) Renovascular effects of adenosine receptor agonists. Renal Physiol 10:272–282

    CAS  PubMed  Google Scholar 

  • Huang DY, Vallon V, Zimmermann H, Koszalka P, Schrader J, Osswald H (2006) Ecto-5-nucleotidase (cd73)-dependent and -independent generation of adenosine participates in the mediation of tubuloglomerular feedback in vivo. Am J Physiol Renal Physiol 291:F282–F288

    Article  CAS  PubMed  Google Scholar 

  • Huber W, Ilgmann K, Page M, Hennig M, Schweigart U, Jeschke B, Lutilsky L, Weiss W, Salmhofer H, Classen M (2002) Effect of theophylline on contrast material-nephropathy in patients with chronic renal insufficiency: controlled, randomized, double-blinded study. Radiology 223:772–779

    Article  CAS  PubMed  Google Scholar 

  • Huber W, Schipek C, Ilgmann K, Page M, Hennig M, Wacker A, Schweigart U, Lutilsky L, Valina C, Seyfarth M, Schomig A, Classen M (2003) Effectiveness of theophylline prophylaxis of renal impairment after coronary angiography in patients with chronic renal insufficiency. Am J Cardiol 91:1157–1162

    Article  CAS  PubMed  Google Scholar 

  • Iijima K, Moore LC, Goligorsky MS (1991) Syncytial organization of cultured rat mesangial cells. Am J Physiol 260:F848–F855

    CAS  PubMed  Google Scholar 

  • Inscho EW (1996) Purinoceptor-mediated regulation of the renal microvasculature. J Auton Pharmacol 16:385–388

    Article  CAS  PubMed  Google Scholar 

  • Inscho EW, Carmines PK, Navar LG (1991) Juxtamedullary afferent arteriolar responses to P1 and P2 purinergic stimulation. Hypertension 17:1033–1037

    CAS  PubMed  Google Scholar 

  • Ishikawa I, Shikura N, Takada K (1993) Amelioration of glycerol-induced acute renal failure in rats by an adenosine A1 receptor antagonist (FR-113453). Renal Fail 15:1–5

    Article  CAS  Google Scholar 

  • Itoh S, Carretero OA, Murray RD (1985) Possible role of adenosine in the macula densa mechanism of renin release in rabbits. J Clin Invest 76:1412–1417

    Article  CAS  PubMed  Google Scholar 

  • Jackson EK, Raghvendra DK (2004) The extracellular cyclic AMP-adenosine pathway in renal physiology. Annu Rev Physiol 66:571–599

    Article  CAS  PubMed  Google Scholar 

  • Jackson EK, Kost CK Jr, Herzer WA, Smits GJ, Tofovic SP (2001) A(1) receptor blockade induces natriuresis with a favorable renal hemodynamic profile in SHHF/Mcc-fa(cp) rats chronically treated with salt and furosemide. J Pharmacol Exp Ther 299:978–987

    CAS  PubMed  Google Scholar 

  • Jackson EK, Mi Z, Zhu C, Dubey RK (2003) Adenosine biosynthesis in the collecting duct. J Pharmacol Exp Ther 307:888–896

    Article  CAS  PubMed  Google Scholar 

  • Joo JD, Kim M, Horst P, Kim J, D’Agati VD, Emala CW Sr, Lee HT (2007) Acute and delayed renal protection against renal ischemia and reperfusion injury with A1 adenosine receptors. Am J Physiol Renal Physiol 293:F1847–F1857

    Article  CAS  PubMed  Google Scholar 

  • Kang HS, Kerstan D, Dai LJ, Ritchie G, Quamme GA (2001) Adenosine modulates Mg(2 + ) uptake in distal convoluted tubule cells via A(1) and A(2) purinoceptors. Am J Physiol Renal Physiol 281:F1141–F1147

    CAS  PubMed  Google Scholar 

  • Kapoor A, Kumar S, Gulati S, Gambhir S, Sethi RS, Sinha N (2002) The role of theophylline in contrast-induced nephropathy: a case–control study. Nephrol Dial Transplant 17:1936–1941

    Article  CAS  PubMed  Google Scholar 

  • Katholi RE, Taylor GJ, McCann WP, Woods WT Jr, Womack KA, McCoy CD, Katholi CR, Moses HW, Mishkel GJ, Lucore CL, et al. (1995) Nephrotoxicity from contrast media: attenuation with theophylline. Radiology 195:17–22

    CAS  PubMed  Google Scholar 

  • Kawabata M, Ogawa T, Takabatake T (1998) Control of rat glomerular microcirculation by juxtaglomerular adenosine A1 receptors. Kidney Int 67(Suppl):S228–S230

    Article  CAS  Google Scholar 

  • Kellett R, Bowmer CJ, Collis MG, Yates MS (1989) Amelioration of glycerol-induced acute renal failure in the rat with 8-cyclopentyl-1,3-dipropylxanthine. Br J Pharmacol 98:1066–1074

    CAS  PubMed  Google Scholar 

  • Kim SM, Mizel D, Huang YG, Briggs JP, Schnermann J (2006) Adenosine as a mediator of macula densa-dependent inhibition of renin secretion. Am J Physiol Renal Physiol 290:F1016–F1023

    Article  CAS  PubMed  Google Scholar 

  • Knight RJ, Collis MG, Yates MS, Bowmer CJ (1991) Amelioration of cisplatin-induced acute renal failure with 8-cyclopentyl-1,3-dipropylxanthine. Br J Pharmacol 104:1062–1068

    CAS  PubMed  Google Scholar 

  • Knight RJ, Bowmer CJ, Yates MS (1993a) Effect of the selective A1 adenosine antagonist 8-cyclopentyl-1,3-dipropylxanthine on acute renal dysfunction induced by Escherichia coli endotoxin in rats. J Pharm Pharmacol 45:979–984

    CAS  PubMed  Google Scholar 

  • Knight RJ, Bowmer CJ, Yates MS (1993b) The diuretic action of 8-cyclopentyl-1,3-dipropylxanthine, a selective A1 adenosine receptor antagonist. Br J Pharmacol 109(1): 271–277

    CAS  PubMed  Google Scholar 

  • Kolonko A, Wiecek A, Kokot F (1998) The nonselective adenosine antagonist theophylline does prevent renal dysfunction induced by radiographic contrast agents. J Nephrol 11:151–156

    CAS  PubMed  Google Scholar 

  • Komlosi P, Peti-Peterdi J, Fuson AL, Fintha A, Rosivall L, Bell PD (2004) Macula densa basolateral ATP release is regulated by luminal [NaCl] and dietary salt intake. Am J Physiol Renal Physiol 286:F1054–F1058

    Article  CAS  PubMed  Google Scholar 

  • Kost CK Jr, Herzer WA, Rominski BR, Mi Z, Jackson EK (2000) Diuretic response to adenosine A(1) receptor blockade in normotensive and spontaneously hypertensive rats: role of pertussis toxin-sensitive G-proteins. J Pharmacol Exp Ther 292:752–760

    CAS  PubMed  Google Scholar 

  • Lai EY, Martinka P, Fahling M, Mrowka R, Steege A, Gericke A, Sendeski M, Persson PB, Persson AE, Patzak A (2006) Adenosine restores angiotensin II-induced contractions by receptor-independent enhancement of calcium sensitivity in renal arterioles. Circ Res 99:1117–1124

    Article  CAS  PubMed  Google Scholar 

  • Lee HT, Emala CW (2000) Protective effects of renal ischemic preconditioning and adenosine pretreatment: role of A(1) and A(3) receptors. Am J Physiol 278:F380–F387

    CAS  Google Scholar 

  • Lee HT, Emala CW (2001a) Protein kinase C and G(i/o) proteins are involved in adenosine- and ischemic preconditioning-mediated renal protection. J Am Soc Nephrol 12:233–240

    CAS  PubMed  Google Scholar 

  • Lee HT, Emala CW (2001b) Systemic adenosine given after ischemia protects renal function via A(2a) adenosine receptor activation. Am J Kidney Dis 38:610–618

    Article  CAS  PubMed  Google Scholar 

  • Lee HT, Ota-Setlik A, Xu H, D’Agati VD, Jacobson MA, Emala CW (2003) A3 adenosine receptor knockout mice are protected against ischemia- and myoglobinuria-induced renal failure. Am J Physiol Renal Physiol 284:F267–F273

    CAS  PubMed  Google Scholar 

  • Lee HT, Gallos G, Nasr SH, Emala CW (2004a) A1 adenosine receptor activation inhibits inflammation, necrosis, and apoptosis after renal ischemia-reperfusion injury in mice. J Am Soc Nephrol 15:102–111

    Article  CAS  PubMed  Google Scholar 

  • Lee HT, Xu H, Nasr SH, Schnermann J, Emala CW (2004b) A1 adenosine receptor knockout mice exhibit increased renal injury following ischemia and reperfusion. Am J Physiol Renal Physiol 286:F298–F306

    Article  CAS  PubMed  Google Scholar 

  • Lee HT, Jan M, Bae SC, Joo JD, Goubaeva FR, Yang J, Kim M (2006) A1 adenosine receptor knock-out mice are protected against acute radiocontrast nephropathy in vivo. Am J Physiol Renal Physiol 290:F1367–F1375

    Article  CAS  PubMed  Google Scholar 

  • Lee HT, Kim M, Jan M, Penn RB, Emala CW (2007) Renal tubule necrosis and apoptosis modulation by A1 adenosine receptor expression. Kidney Int 71:1249–1261

    Article  CAS  PubMed  Google Scholar 

  • Lin JJ, Churchill PC, Bidani AK (1986) Effect of theophylline on the initiation phase of postischemic acute renal failure in rats. J Lab Clin Med 108:150–154

    CAS  PubMed  Google Scholar 

  • Lin JJ, Churchill PC, Bidani AK (1987) The effect of dipyridamole on the initiation phase of postischemic acute renal failure in rats. Can J Physiol Pharmacol 65:1491–1495

    CAS  PubMed  Google Scholar 

  • Lin JJ, Churchill PC, Bidani AK (1988) Theophylline in rats during maintenance phase of postischemic acute renal failure. Kidney Int 33:24–28

    Article  CAS  PubMed  Google Scholar 

  • Lorenz JN, Weihprecht H, He XR, Skott O, Briggs JP, Schnermann J (1993) Effects of adenosine and angiotensin on macula densa-stimulated renin secretion. Am J Physiol 265:F187–F194

    CAS  PubMed  Google Scholar 

  • Lorenz JN, Dostanic-Larson I, Shull GE, Lingrel JB (2006) Ouabain inhibits tubuloglomerular feedback in mutant mice with ouabain-sensitive alpha1 Na,K-ATPase. J Am Soc Nephrol 17:2457–2463

    Article  CAS  PubMed  Google Scholar 

  • Lucas DG Jr, Hendrick JW, Sample JA, Mukherjee R, Escobar GP, Smits GJ, Crawford FA Jr, Spinale FG (2002) Cardiorenal effects of adenosine subtype 1 (A1) receptor inhibition in an experimental model of heart failure. J Am Coll Surg 194:603–609

    Article  PubMed  Google Scholar 

  • Macias-Nunez JF, Fiksen-Olsen MJ, Romero JC, Knox FG (1983) Intrarenal blood flow distribution during adenosine-mediated vasoconstriction. Am J Physiol 244:H138–H141

    Google Scholar 

  • Macias-Nunez JF, Garcia Iglesias C, Santos JC, Sanz E, Lopez-Novoa JM (1985) Influence of plasma renin content, intrarenal angiotensin II, captopril, and calcium channel blockers on the vasoconstriction and renin release promoted by adenosine in the kidney. J Lab Clin Med 106:562–567

    CAS  PubMed  Google Scholar 

  • Mahon NG, Blackstone EH, Francis GS, Starling RC, III, Young JB, Lauer MS (2002) The prognostic value of estimated creatinine clearance alongside functional capacity in ambulatory patients with chronic congestive heart failure. J Am Coll Cardiol 40:1106–1113

    Article  CAS  PubMed  Google Scholar 

  • Miracle CM, Rieg T, Blantz RC, Vallon V, Thomson SC (2007) Combined effects of carbonic anhydrase inhibitor and adenosine A1 receptor antagonist on hemodynamic and tubular function in the kidney. Kidney Blood Press Res 30:388–399

    Article  CAS  PubMed  Google Scholar 

  • Miyamoto M, Yagil Y, Larson T, Robertson C, Jamison RL (1988) Effects of intrarenal adenosine on renal function and medullary blood flow in the rat. Am J Physiol 255:F1230–F1234

    CAS  PubMed  Google Scholar 

  • Mizumoto H, Karasawa A (1993) Renal tubular site of action of KW-3902, a novel adenosine A-1-receptor antagonist, in anesthetized rats. Jpn J Pharmacol 31(3):251–253

    Article  Google Scholar 

  • Modlinger PS, Welch WJ (2003) Adenosine A1 receptor antagonists and the kidney. Curr Opin Nephrol Hypertens 12:497–502

    Article  CAS  PubMed  Google Scholar 

  • Moyer BD, McCoy DE, Lee B, Kizer N, Stanton BA (1995) Adenosine inhibits arginine vasopressin-stimulated chloride secretion in a mouse IMCD cell line (mIMCD-K2). Am J Physiol 269:F884–F891

    CAS  PubMed  Google Scholar 

  • Nagashima K, Kusaka H, Karasawa A (1995) Protective effects of KW-3902, an adenosine A1-receptor antagonist, against cisplatin-induced acute renal failure in rats. Jpn J Pharmacol 67:349–357

    Article  CAS  PubMed  Google Scholar 

  • Newman WH, Grossman SJ, Frankis MB, Webb JG (1984) Increased myocardial adenosine release in heart failure. J Mol Cell Cardiol 16:577–580

    Article  CAS  PubMed  Google Scholar 

  • Nishiyama A, Miyatake A, Aki Y, Fukui T, Rahman M, Kimura S, Abe Y (1999) Adenosine A(1) receptor antagonist KW-3902 prevents hypoxia-induced renal vasoconstriction. J Pharmacol Exp Ther 291:988–993

    CAS  PubMed  Google Scholar 

  • Nishiyama A, Inscho EW, Navar LG (2001) Interactions of adenosine A1 and A2a receptors on renal microvascular reactivity. Am J Physiol Renal Physiol 280:F406–F414

    CAS  PubMed  Google Scholar 

  • Okusa MD, Linden J, Macdonald T, Huang L (1999) Selective A2A adenosine receptor activation reduces ischemia-reperfusion injury in rat kidney. Am J Physiol 277:F404–F412

    CAS  PubMed  Google Scholar 

  • Olivera A, Lamas S, Rodriguez-Puyol D, Lopez-Novoa JM (1989) Adenosine induces mesangial cell contraction by an A1-type receptor. Kidney Int 35:1300–1305

    Article  CAS  PubMed  Google Scholar 

  • Oppermann M, Friedman DJ, Faulhaber-Walter R, Mizel D, Castrop H, Enjyoji K, Robson SC, Schnermann JB (2008) Tubuloglomerular feedback and renin secretion in NTPDase1/CD39-deficient mice. Am J Physiol Renal Physiol 294:F965–F970

    Article  CAS  PubMed  Google Scholar 

  • Osswald H, Vallon V (2009) Adenosine and tubuloglomerular feedback in the pathophysiology of acute renal failure. In: Ronco C, Bellomo R, Kellum JA (eds) Critical Care Nephrology, 2nd edn, Saunders Elsevier, Philadelphia, pp 128–134

    Google Scholar 

  • Osswald H, Schmitz HJ, Heidenreich O (1975) Adenosine response of the rat kidney after saline loading, sodium restriction and hemorrhagia. Pflügers Arch 357:323–333

    Article  CAS  PubMed  Google Scholar 

  • Osswald H, Schmitz HJ, Kemper R (1978a) Renal action of adenosine: effect on renin secretion in the rat. Naunyn–Schmiedeberg’s Arch Pharmacol 303:95–99

    Article  CAS  Google Scholar 

  • Osswald H, Spielman WS, Knox FG (1978b) Mechanism of adenosine-mediated decreases in glomerular filtration rate in dogs. Circ Res 43:465–469

    CAS  PubMed  Google Scholar 

  • Osswald H, Helmlinger J, Jendralski A, Abrar B (1979) Improvement of renal function by theophylline in acute renal failure of the rat. Naunyn–Schmiedebergs Arch Pharmacol 307(Suppl):R 47

    Google Scholar 

  • Osswald H, Nabakowski G, Hermes H (1980) Adenosine as a possible mediator of metabolic control of glomerular filtration rate. Int J Biochem 12:263–267

    Article  CAS  PubMed  Google Scholar 

  • Osswald H, Hermes H, Nabakowski G (1982) Role of adenosine in signal transmission of tubuloglomerular feedback. Kidney Int 22(Suppl 12):S136–S142

    Google Scholar 

  • Panjehshahin MR, Munsey TS, Collis MG, Bowmer CJ, Yates MS (1992) Further characterization of the protective effect of 8-cyclopentyl-1,3-dipropylxanthine on glycerol-induced acute renal failure in the rat. J Pharm Pharmacol 44:109–113

    CAS  PubMed  Google Scholar 

  • Patzak A, Lai EY, Fahling M, Sendeski M, Martinka P, Persson PB, Persson AE (2007) Adenosine enhances long term the contractile response to angiotensin II in afferent arterioles. Am J Physiol Regul Integr Comp Physiol 293:R2232–R2242

    CAS  PubMed  Google Scholar 

  • Pflueger AC, Gross JM, Knox FG (1999a) Adenosine-induced renal vasoconstriction in diabetes mellitus rats: role of prostaglandins. Am J Physiol 277:R1410–R1417

    CAS  PubMed  Google Scholar 

  • Pflueger AC, Osswald H, Knox FG (1999b) Adenosine-induced renal vasoconstriction in diabetes mellitus rats: role of nitric oxide. Am J Physiol 276:F340–F346

    CAS  PubMed  Google Scholar 

  • Ren Y, Arima S, Carretero OA, Ito S (2002a) Possible role of adenosine in macula densa control of glomerular hemodynamics. Kidney Int 61:169–176

    Article  CAS  PubMed  Google Scholar 

  • Ren Y, Carretero OA, Garvin JL (2002b) Role of mesangial cells and gap junctions in tubuloglomerular feedback. Kidney Int 62:525–531

    Article  PubMed  Google Scholar 

  • Ren Y, Garvin JL, Liu R, Carretero OA (2004) Role of macula densa adenosine triphosphate (ATP) in tubuloglomerular feedback. Kidney Int 66:1479–1485

    Article  CAS  PubMed  Google Scholar 

  • Rieg T, Steigele H, Schnermann J, Richter K, Osswald H, Vallon V (2005) Requirement of intact adenosine A1 receptors for the diuretic and natriuretic action of the methylxanthines theophylline and caffeine. J Pharmacol Exp Ther 313:403–409

    Article  CAS  PubMed  Google Scholar 

  • Rieg T, Schnermann J, Vallon V (2007) Adenosine A1 receptors determine effects of caffeine on total fluid intake but not caffeine appetite. Eur J Pharmacol 555:174–177

    Article  CAS  PubMed  Google Scholar 

  • Rieg T, Pothula K, Schroth J, Satriano J, Osswald H, Schnermann J, Insel PA, Bundey RA, Vallon V (2008) Vasopressin regulation of inner medullary collecting ducts and compensatory changes in mice lacking adenosine A1 receptors. Am J Physiol Renal Physiol 294:F638–F644

    Article  CAS  PubMed  Google Scholar 

  • Schnermann J, Osswald H, Hermle M (1977) Inhibitory effect of methylxanthines on feedback control of glomerular filtration rate in the rat kidney. Pflügers Arch 369:39–48

    Article  CAS  PubMed  Google Scholar 

  • Schnermann J, Weihprecht H, Briggs JP (1990) Inhibition of tubuloglomerular feedback during adenosine1 receptor blockade. Am J Physiol 258:F553–F561

    CAS  PubMed  Google Scholar 

  • Schweda F, Wagner C, Kramer BK, Schnermann J, Kurtz A (2003) Preserved macula densa-dependent renin secretion in A1 adenosine receptor knockout mice. Am J Physiol Renal Physiol 284:F770–F777

    CAS  PubMed  Google Scholar 

  • Smith JA, Whitaker EM, Bowmer CJ, Yates MS (2000) Differential expression of renal adenosine A(1) receptors induced by acute renal failure. Biochem Pharmacol 59:727–732

    Article  CAS  PubMed  Google Scholar 

  • Smith JA, Sivaprasadarao A, Munsey TS, Bowmer CJ, Yates MS (2001) Immunolocalisation of adenosine A(1) receptors in the rat kidney. Biochem Pharmacol 61:237–244

    Article  CAS  PubMed  Google Scholar 

  • Spielman WS, Osswald H (1978) Characterization of the postocclusive response of renal blood flow in the cat. Am J Physiol 235:F286–F290

    CAS  PubMed  Google Scholar 

  • Spielman WS, Osswald H (1979) Blockade of postocclusive renal vasoconstriction by an angiotensin II antagonist: evidence for an angiotensin–adenosine interaction. Am J Physiol 237:F463–F467

    CAS  PubMed  Google Scholar 

  • Sun D, Samuelson LC, Yang T, Huang Y, Paliege A, Saunders T, Briggs J, Schnermann J (2001) Mediation of tubuloglomerular feedback by adenosine: evidence from mice lacking adenosine 1 receptors. Proc Natl Acad Sci USA 98:9983–9988

    Article  CAS  PubMed  Google Scholar 

  • Suzuki F, Shimada J, Mizumoto H, Karasawa A, Kubo K, Nonaka H, Ishii A, Kawakita T (1992) Adenosine A1 antagonists. 2. Structure–activity relationships on diuretic activities and protective effects against acute renal failure. J Med Chem 35:3066–3075

    Article  CAS  PubMed  Google Scholar 

  • Tagawa H, Vander AJ (1970) Effects of adenosine compounds on renal function and renin secretion in dogs. Circ Res 26:327–338

    CAS  PubMed  Google Scholar 

  • Takeda M, Yoshitomi K, Imai M (1993) Regulation of Na(+)−3HCO3 cotransport in rabbit proximal convoluted tubule via adenosine A1 receptor. Am J Physiol 265:F511–F519

    CAS  PubMed  Google Scholar 

  • Takenaka T, Inoue T, Kanno Y, Okada H, Hill CE, Suzuki H (2008a) Connexins 37 and 40 transduce purinergic signals mediating renal autoregulation. Am J Physiol Regul Integr Comp Physiol 294:R1–R11

    CAS  PubMed  Google Scholar 

  • Takenaka T, Inoue T, Kanno Y, Okada H, Meaney KR, Hill CE, Suzuki H (2008b) Expression and role of connexins in the rat renal vasculature. Kidney Int 73:415–422

    Article  CAS  PubMed  Google Scholar 

  • Tang L, Parker M, Fei Q, Loutzenhiser R (1999) Afferent arteriolar adenosine A2a receptors are coupled to KATP in in vitro perfused hydronephrotic rat kidney. Am J Physiol 277:F926–F933

    CAS  PubMed  Google Scholar 

  • Tang Y, Zhou L (2003) Characterization of adenosine A1 receptors in human proximal tubule epithelial (HK-2) cells. Receptor Channel 9:67–75

    Article  CAS  Google Scholar 

  • Thomson S, Bao D, Deng A, Vallon V (2000) Adenosine formed by 5-nucleotidase mediates tubuloglomerular feedback. J Clin Invest 106:289–298

    Article  CAS  PubMed  Google Scholar 

  • Torikai S (1987) Effect of phenylisopropyladenosine on vasopressin-dependent cyclic AMP generation in defined nephron segments from rat. Renal Physiol 10:33–39

    CAS  PubMed  Google Scholar 

  • Toya Y, Umemura S, Iwamoto T, Hirawa N, Kihara M, Takagi N, Ishii M (1993) Identification and characterization of adenosine A1 receptor–cAMP system in human glomeruli. Kidney Int 43:928–932

    Article  CAS  PubMed  Google Scholar 

  • Traynor T, Yang T, Huang YG, Arend L, Oliverio MI, Coffman T, Briggs JP, Schnermann J (1998) Inhibition of adenosine-1 receptor-mediated preglomerular vasoconstriction in AT1A receptor-deficient mice. Am J Physiol 275:F922–F927

    CAS  PubMed  Google Scholar 

  • Vallon V (2008) P2 receptors in the regulation of renal transport mechanisms. Am J Physiol Renal Physiol 294:F10–F27

    Article  CAS  PubMed  Google Scholar 

  • Vallon V, Richter K, Huang DY, Rieg T, Schnermann J (2004) Functional consequences at the single-nephron level of the lack of adenosine A1 receptors and tubuloglomerular feedback in mice. Pflugers Arch 448:214–221

    Article  CAS  PubMed  Google Scholar 

  • Vallon V, Muhlbauer B, Osswald H (2006) Adenosine and kidney function. Physiol Rev 86: 901–940

    Article  CAS  PubMed  Google Scholar 

  • Vallon V, Miracle C, Thomson S (2008) Adenosine and kidney function: potential implications in patients with heart failure. Eur J Heart Fail 10:176–187

    Article  CAS  PubMed  Google Scholar 

  • van-Buren M, Bijlsma JA, Boer P, van-Rijn HJ, Koomans HA (1993) Natriuretic and hypotensive effect of adenosine-1 blockade in essential hypertension. Hypertension 22:728–734

    CAS  PubMed  Google Scholar 

  • Wagner C, de Wit C, Kurtz L, Grunberger C, Kurtz A, Schweda F (2007) Connexin40 is essential for the pressure control of renin synthesis and secretion. Circ Res 100:556–563

    Article  CAS  PubMed  Google Scholar 

  • Weaver DR, Reppert SM (1992) Adenosine receptor gene expression in rat kidney. Am J Physiol 263:F991–F995

    CAS  PubMed  Google Scholar 

  • Weihprecht H, Lorenz JN, Schnermann J, Skott O, Briggs JP (1990) Effect of adenosine1-receptor blockade on renin release from rabbit isolated perfused juxtaglomerular apparatus. J Clin Invest 85:1622–1628

    Article  CAS  PubMed  Google Scholar 

  • Weihprecht H, Lorenz JN, Briggs JP, Schnermann J (1992) Vasomotor effects of purinergic agonists in isolated rabbit afferent arterioles. Am J Physiol 263:F1026–F1033

    CAS  PubMed  Google Scholar 

  • Weihprecht H, Lorenz JN, Briggs JP, Schnermann J (1994) Synergistic effects of angiotensin and adenosine in the renal microvasculature. Am J Physiol 266:F227–F239

    CAS  PubMed  Google Scholar 

  • Welch WJ (2002) Adenosine A1 receptor antagonists in the kidney: effects in fluid-retaining disorders. Curr Opin Pharmacol 2:165–170

    Article  CAS  PubMed  Google Scholar 

  • Wilcox CS, Welch WJ, Schreiner GF, Belardinelli L (1999) Natriuretic and diuretic actions of a highly selective adenosine A1 receptor antagonist. J Am Soc Nephrol 10:714–720

    CAS  PubMed  Google Scholar 

  • Yagil Y (1990) Interaction of adenosine with vasopressin in the inner medullary collecting duct. Am J Physiol 259:F679–F687

    CAS  PubMed  Google Scholar 

  • Yagil C, Katni G, Yagil Y (1994) The effects of adenosine on transepithelial resistance and sodium uptake in the inner medullary collecting duct. Pflügers Arch 427:225–232

    Article  CAS  PubMed  Google Scholar 

  • Yao K, Kusaka H, Sato K, Karasawa A (1994) Protective effects of KW-3902, a novel adenosine A1-receptor antagonist, against gentamicin-induced acute renal failure in rats. Jpn J Pharmacol 65:167–170

    Article  CAS  PubMed  Google Scholar 

  • Yao K, Heyne N, Erley CM, Risler T, Osswald H (2001) The selective adenosine A1 receptor antagonist KW-3902 prevents radiocontrast media-induced nephropathy in rats with chronic nitric oxide deficiency. Eur J Pharmacol 414:99–104

    Article  CAS  PubMed  Google Scholar 

  • Yaoita H, Ito O, Arima S, Endo Y, Takeuchi K, Omata K, Ito S (1999) Effect of adenosine on isolated afferent arterioles. Nippon Jinzo Gakkai Shi 41:697–703

    CAS  PubMed  Google Scholar 

  • Yates MS, Bowmer CJ, Kellett R, Collis MG (1987) Effect of 8-phenyltheophylline, enprofylline and hydrochlorothiazide on glycerol-induced acute renal failure in the rat. J Pharm Pharmacol 39:803–808

    CAS  PubMed  Google Scholar 

  • Zou AP, Nithipatikom K, Li PL, Cowley AWJr (1999) Role of renal medullary adenosine in the control of blood flow and sodium excretion. Am J Physiol 45:R790–R798

    Google Scholar 

Download references

Acknowledgements

The work from our laboratories was supported by the Deutsche Forschungsgemeinschaft (DFG VA 118/2-1, DFG OS 42/1–42/7), the Department of Veterans Affairs, the National Institutes of Health (DK56248, DK28602, GM66232, P30DK079337), and the American Heart Association (GiA 655232Y).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Vallon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vallon, V., Osswald, H. (2009). Adenosine Receptors and the Kidney. In: Wilson, C., Mustafa, S. (eds) Adenosine Receptors in Health and Disease. Handbook of Experimental Pharmacology, vol 193. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89615-9_15

Download citation

Publish with us

Policies and ethics