Skip to main content

Numerical Modeling of the Electrohydrodynamics in a Hybrid Particulate Collector

  • Conference paper
Electrostatic Precipitation
  • 1629 Accesses

Abstract

The specific gas flow influenced by the electrical field in the electrostatic precipitator (ESP) is called electrohydrodynamic (EHD) flow. The hybrid particulate collector (HPC) is a hybrid of the ESP and the baghouse in a unique approach combining the best features of both. The bags are placed between two perforated collection plates. The HPC is a very compact and high efficiency system. In this paper, numerical modeling of the three-dimensional EHD flow in a hybrid particulate collector (HPC) is presented. An unstructured finite volume method (FVM) was developed to solve the Poisson’s electrical equation and the current continuity equation within the collector. The Fluent code was used to solve the fluid N-S equations and the RNG k-∈ turbulent model equations with considering the electrical body force. The numerical results show that the EHD flow can produce strong recirculation in the hybrid collector. Different from the ESP, the electric field has still strong influence on the gas flow when the EHD number below one.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. H.J. White. Industrial Electrostatic Precipitation. Reading, MA: Addison-Wesley, Inc., 1963, 99–100.

    Google Scholar 

  2. Robinson M. Effects of the corona discharge on electric wind convection and eddy diffusion in an electrostatic precipitator. Ph. D. Thesis, The Coopr Union University, 1976.

    Google Scholar 

  3. Yabe A, Mori Y and Hijikata K. EHD study of the corona wind between wire and plate electrodes. AIAA J., 1978, 15: 340–345.

    Article  Google Scholar 

  4. Yamamoto T and Velkoff H R. Electrohydrodynamics in an electrostatic precipitator, J. Fluid Mech., 1981, 108: 1–18.

    Article  Google Scholar 

  5. Leonard G L, Mitchner M and Self S A., An experimental study of the electrohydrodynamic flow in electrostatic precipitators. J. Fluid Mech., 1983, 127: 123–140.

    Article  Google Scholar 

  6. Larsen PS, Sorensen SK. Effect of secondary flows and turbulence on electrostatic precipitator efficiency. Atmos. Environ., 18: 1963–1967, 1984.

    Article  CAS  Google Scholar 

  7. Yamamoto T. Effects of turbulence and electrohydrodynamics on the performance of electrostatic precipitators. J. Electrostatics, 1989, 22(1): 11–22.

    Article  CAS  Google Scholar 

  8. Kallio G.A. and Stock, D.E., Interaction of electrostatic and fluid dynamic fields in wire-plate electrostatic precipitators. J. Fluid. Mech. 1992, 240: 133–166.

    Article  CAS  Google Scholar 

  9. Liang W.J., Lin T. H. The characteristics of ionic wind, and its effect on electrostatic precipitators. Aerosol Sci. Technol., 1994, 20(4): 330–344.

    Article  CAS  Google Scholar 

  10. Schemid, H.J., Stolz, S. and Buggisch, H., On the modeling of the electro-hydrodynamic flow field in electrostatic precipitators flow, Flow, Turbulence and Combustion, 2002, 68: 63–89.

    Article  Google Scholar 

  11. Chun, Y. N. Berezin, A. A. Brocilo, D. Mizeraczyk, J. Chang, J.-S. Numerical Modelling of near corona wire electrohydrodynamic flow in a wire-plate electrostatic precípitator, IEEE. Trans. Die. Elec., 2007, 14(1): 119–124.

    Article  Google Scholar 

  12. Hong Lei, Lian Ze and Wu Zinu. EHD turbulent flow and Monte-Carlo simulation for particle charging and tracing in a wire-plate electrostatic precipitator, J. Electrostat., 2008, 66: 130–141.

    Article  Google Scholar 

  13. Zhuang, Y, Stanley. J. Miller. 2001. Advance Hybrid Particulate Collector final topic report for phase III.

    Google Scholar 

  14. J. R. McDonald, W. B. Smith, H. W. Spencer III, L. E. Sparks, A mathematical model for calculating electrical conditions in wire duct electrostatic precipitation devices, J. Appl. Phys, 1977, 48: 2231–2243.

    Article  Google Scholar 

  15. B.E. Launder, D.B. Spalding, The numerical computation of turbulent flows. Computer Method in Applied Mech. and Eng., 1974, 3: 269–289.

    Google Scholar 

  16. Fluent Inc. Fluent 6.3 User’s Guide, 2008.

    Google Scholar 

  17. IEEE-DEIS-EHD Technical Committee. Recommended International Standard for Dimensionless Parameters Used in Electrohydrodynamics, IEEE Trans. Dielectr. Electr. Insul., (10) 3–10, 2003.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Zhejiang University Press, Hangzhou and Springer-Verlag GmbH Berlin Heidelberg

About this paper

Cite this paper

Zhengwei, L., Qiang, Y., Qiang, S., Shuiqing, L. (2009). Numerical Modeling of the Electrohydrodynamics in a Hybrid Particulate Collector. In: Yan, K. (eds) Electrostatic Precipitation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89251-9_31

Download citation

Publish with us

Policies and ethics